Navigation Links
Carnegie Mellon MRI technology that non-invasively locates, quantifies specific cells in the body

PHILADELPHIAMagnetic resonance imaging (MRI) isn't just for capturing detailed images of the body's anatomy. Thanks to novel imaging reagents and technology developed by Carnegie Mellon University scientist Eric Ahrens, MRI can be used to visualize with "exquisite" specificity cell populations of interest in the living body. The ability to non-invasively locate and track cells, such as immune cells, will greatly aid the study and treatment of cancer, inflammation, and autoimmune diseases, as well as provide a tool for advancing clinical translation of the emerging field of cellular regenerative medicine, by tracking stem cells for example.

Ahrens will present his research on this new approach, called fluorocarbon labeling, Thursday, Aug. 21 at the 236th national meeting of the American Chemical Society in Philadelphia.

"With our technology we can image specific cells in real-time with exquisite selectivity, which allows us to track their location and movement and to count the apparent number of cells present. We then use conventional MRI to obtain a high-resolution image that places the labeled cells in their anatomical context," said Ahrens, an associate professor of biological sciences at the Mellon College of Science.

The ability to track the movement and eventual location of specific immune cells is critical for understanding the cells' role in disease and therapeutic mechanisms, and for developing effective cell-based therapeutics. Other MRI methods for visualizing cells use metal-based contrast agents, which can make it difficult to clearly identify labeled cells in the body, according to Ahrens.

"The large background signal from mobile water and intrinsic tissue contrast differences can often make it challenging to unambiguously identify regions containing these metal-ion labeled cells throughout the body, which is the current state of the art," Ahrens said.

Ahrens's new approach fluorocarbon labeling solves this problem by producing images that clearly show the labeled cells at their precise location in the body. Ahrens first labels the cells of interest with a perfluoropolyether (PFPE) nanoemulsion, which is a colloidal suspension of tiny fluorocarbon droplets. Then, he introduces the labeled cells into an animal subject and tracks the cells in vivo using 19F MRI.

While conventional MRI detects the nuclear magnetic resonance signal from protons contained in the mobile water in tissue, 19F MRI detects the signal from the nucleus of the fluorine atom. Fluorine is not normally present in the body at sufficient concentrations to detect, so when Ahrens labels cells with PFPE, he can detect this fluorine 'tracer' with MRI after the cells are transplanted into the body. The Ahrens' team has recently used the PFPE technology to label and track dendritic cells and T cells in a mouse model of type I diabetes, a disease in which immune cells infiltrate the pancreas, attacking and damaging the body's own cells.

"Right now we're using our technology to image key cell types involved in autoimmune diseases like type I diabetes, but our cellular MRI agents also can be adapted to label other cell types, including cells from bone marrow and stem cells. A key long-term application of our technology is to label and monitor cell-based therapeutics in humans," Ahrens said.

Recent advances in cell-based therapeutics research have focused on training immune cells to counteract diseases including cancer and diabetes and on directing stem cells to regenerate damaged tissues. Non-invasively visualizing these therapeutic cells in patients after transfer can be a vexing problem, according to Ahrens, and any approach that can speed up the testing of these treatments will be extremely useful.

"Ideally we would label therapeutic cells with our cellular MRI agents before they are implanted into a patient. In this way, we could use MRI to visualize the movement of the therapeutic cells in the patient to monitor whether they migrate to and remain in the desired tissues," explained Ahrens.

Contact: Jocelyn Duffy
Carnegie Mellon University

Related biology news :

1. Carnegie Mellon scientists develop nanogels that enable controlled delivery of carbohydrate drugs
2. Carnegie Mellon scientists investigate initial molecular mechanism that triggers neuronal firing
3. Carnegie Mellon scientist uses mass spectrometer to weigh virus particle, von Willebrand factor
4. Carnegie Mellon, Pitt Team to study psychosocial stress
5. Mellon awards Carnegie Grant for Ecological Monitoring in South Africa
6. Carnegie Mellon researchers to develop new drug delivery system
7. Carnegie Mellon students win contest
8. Novel mechanism for long-term learning identified by Carnegie Mellon researchers
9. U. Mass Medical School and Carnegie announce licensing agreements with Oxford BioMedica
10. Carnegie Mellon scientists develop fluorescent proteins for live cell imaging, biosensor design
11. Carnegie Mellon receives $1.85 million
Post Your Comments:
(Date:10/29/2015)... ANN ARBOR, Mich. , Oct. 29, 2015 ... with Eurofins Genomics for U.S. distribution of its ... DNA-seq kit and Rubicon,s new ThruPLEX Plasma-seq ... DNA to enable the preparation of NGS libraries ... in plasma for diagnostic and prognostic applications in ...
(Date:10/27/2015)... 2015 In the present market scenario, security ... various industry verticals such as banking, healthcare, defense, electronic ... demand for secure & simplified access control and growing ... hacking of bank accounts, misuse of users, , and ... PC,s, laptops, and smartphones are expected to provide potential ...
(Date:10/26/2015)... LAS VEGAS , Oct. 26, 2015 ... an innovator in modern authentication and a founding member ... launch of its latest version of the Nok Nok™ ... to use standards-based authentication that supports existing and emerging ... Suite is ideal for organizations deploying customer-facing applications that ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , Nov. 24, 2015 Cepheid (NASDAQ: ... be speaking at the following conference, and invited investors ... York, NY      Tuesday, December 1, 2015 at ... York, NY      Tuesday, December 1, 2015 at ... Healthcare Conference, New York, NY ...
(Date:11/24/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) ... of the Toronto Stock Exchange, confirms that as of ... corporate developments that would cause the recent movements in ... --> About Aeterna Zentaris Inc. ... Aeterna Zentaris is a specialty biopharmaceutical company engaged ...
(Date:11/24/2015)... SHPG ) announced today that Jeff Poulton , ... Annual Healthcare Conference in New York City ... (1:30 p.m. GMT). --> SHPG ) announced today that ... Piper Jaffray 27 th Annual Healthcare Conference in ... at 8:30 a.m. EST (1:30 p.m. GMT). --> Shire ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... ... and the environment are paramount. Insertion points for in-line sensors can represent a ... developed the InTrac 781/784 series of retractable sensor housings , which are ...
Breaking Biology Technology: