Navigation Links
Carbon nanotubes could make efficient solar cells
Date:9/10/2009

Using a carbon nanotube instead of traditional silicon, Cornell researchers have created the basic elements of a solar cell that hopefully will lead to much more efficient ways of converting light to electricity than now used in calculators and on rooftops.

The researchers fabricated, tested and measured a simple solar cell called a photodiode, formed from an individual carbon nanotube. Reported online Sept. 11 in the journal Science, the researchers -- led by Paul McEuen, the Goldwin Smith Professor of Physics, and Jiwoong Park, assistant professor of chemistry and chemical biology -- describe how their device converts light to electricity in an extremely efficient process that multiplies the amount of electrical current that flows. This process could prove important for next-generation high efficiency solar cells, the researchers say.

"We are not only looking at a new material, but we actually put it into an application -- a true solar cell device," said first author Nathan Gabor, a graduate student in McEuen's lab.

The researchers used a single-walled carbon nanotube, which is essentially a rolled-up sheet of graphene, to create their solar cell. About the size of a DNA molecule, the nanotube was wired between two electrical contacts and close to two electrical gates, one negatively and one positively charged. Their work was inspired in part by previous research in which scientists created a diode, which is a simple transistor that allows current to flow in only one direction, using a single-walled nanotube. The Cornell team wanted to see what would happen if they built something similar, but this time shined light on it.

Shining lasers of different colors onto different areas of the nanotube, they found that higher levels of photon energy had a multiplying effect on how much electrical current was produced.

Further study revealed that the narrow, cylindrical structure of the carbon nanotube caused the electrons to be neatly squeezed through one by one. The electrons moving through the nanotube became excited and created new electrons that continued to flow. The nanotube, they discovered, may be a nearly ideal photovoltaic cell because it allowed electrons to create more electrons by utilizing the spare energy from the light.

This is unlike today's solar cells, in which extra energy is lost in the form of heat, and the cells require constant external cooling.

Though they have made a device, scaling it up to be inexpensive and reliable would be a serious challenge for engineers, Gabor said.

"What we've observed is that the physics is there," he said.


'/>"/>

Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University
Source:Eurekalert

Related biology news :

1. New study warns limited carbon market puts 20 percent of tropical forest at risk
2. Mice use specialized neurons to detect carbon dioxide in the air
3. Researchers find new taste in fruit flies: carbonated water
4. Studying component parts of living cells with carbon nanotube cellular probes
5. New membrane strips carbon dioxide from natural gas faster and better
6. Green alga genome project catalogs carbon capture machinery
7. Hungry microbes share out the carbon in the roots of plants
8. Decline in uptake of carbon emissions confirmed
9. Study reveals that nitrogen fertilizers deplete soil organic carbon
10. US fires release large amounts of carbon dioxide
11. Wildfire drives carbon levels in northern forests
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/9/2016)... March 9, 2016  Crossmatch ® , a ... solutions, today announced the addition of smart features ... multi-factor authentication platform. New contextual and application-specific ... step-up security where it,s needed most — while ... DC . --> Washington, ...
(Date:3/3/2016)... 2016  2016FLEX, organized by FlexTech, a SEMI ... in flexible, hybrid and printed electronics. More than ... have gathered for short courses, technical session, exhibits, ... The Flex Conference celebrates its 15 th ... organizations, and universities contributing to the adoption of ...
(Date:3/2/2016)... DUBLIN , March 2, 2016 /PRNewswire/ ... the addition of the "Global Biometrics ... to their offering. --> ... the "Global Biometrics as a Service ... --> Research and Markets ...
Breaking Biology News(10 mins):
(Date:5/3/2016)... ... May 03, 2016 , ... Leading ... 2016 on May 31st and June 1st at The Four Seasons Hotel Boston. ... in the life sciences, offering exclusive access to key decision makers who influence ...
(Date:5/3/2016)... , May 3, 2016 ... Assessing Developers and Producers of Those Competitor Biologics  ... to Companies, Activities and Prospects ,  Who ... companies? And what are their sales potentials? Discover, ... you see results, trends, opportunities and revenue forecasting. ...
(Date:5/2/2016)... YORK , May 2, 2016 ... announces that its technology partner Mannin Research Inc. will ... Ophthalmology (ARVO), which takes place from May 1-5, 2016 ... executives will be meeting with its vendors and research ... explore business development goals and other collaborative opportunities for ...
(Date:4/29/2016)... (PRWEB) , ... April 30, 2016 , ... The MIT ... textile design, the bioLogic team explored how bacterial properties can be applied to fabric ... using Natto bacteria, which move in response to humidity change. The team harvested Natto ...
Breaking Biology Technology: