Navigation Links
Carbon nanotubes could make efficient solar cells
Date:9/10/2009

Using a carbon nanotube instead of traditional silicon, Cornell researchers have created the basic elements of a solar cell that hopefully will lead to much more efficient ways of converting light to electricity than now used in calculators and on rooftops.

The researchers fabricated, tested and measured a simple solar cell called a photodiode, formed from an individual carbon nanotube. Reported online Sept. 11 in the journal Science, the researchers -- led by Paul McEuen, the Goldwin Smith Professor of Physics, and Jiwoong Park, assistant professor of chemistry and chemical biology -- describe how their device converts light to electricity in an extremely efficient process that multiplies the amount of electrical current that flows. This process could prove important for next-generation high efficiency solar cells, the researchers say.

"We are not only looking at a new material, but we actually put it into an application -- a true solar cell device," said first author Nathan Gabor, a graduate student in McEuen's lab.

The researchers used a single-walled carbon nanotube, which is essentially a rolled-up sheet of graphene, to create their solar cell. About the size of a DNA molecule, the nanotube was wired between two electrical contacts and close to two electrical gates, one negatively and one positively charged. Their work was inspired in part by previous research in which scientists created a diode, which is a simple transistor that allows current to flow in only one direction, using a single-walled nanotube. The Cornell team wanted to see what would happen if they built something similar, but this time shined light on it.

Shining lasers of different colors onto different areas of the nanotube, they found that higher levels of photon energy had a multiplying effect on how much electrical current was produced.

Further study revealed that the narrow, cylindrical structure of the carbon nanotube caused the electrons to be neatly squeezed through one by one. The electrons moving through the nanotube became excited and created new electrons that continued to flow. The nanotube, they discovered, may be a nearly ideal photovoltaic cell because it allowed electrons to create more electrons by utilizing the spare energy from the light.

This is unlike today's solar cells, in which extra energy is lost in the form of heat, and the cells require constant external cooling.

Though they have made a device, scaling it up to be inexpensive and reliable would be a serious challenge for engineers, Gabor said.

"What we've observed is that the physics is there," he said.


'/>"/>

Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University
Source:Eurekalert

Related biology news :

1. New study warns limited carbon market puts 20 percent of tropical forest at risk
2. Mice use specialized neurons to detect carbon dioxide in the air
3. Researchers find new taste in fruit flies: carbonated water
4. Studying component parts of living cells with carbon nanotube cellular probes
5. New membrane strips carbon dioxide from natural gas faster and better
6. Green alga genome project catalogs carbon capture machinery
7. Hungry microbes share out the carbon in the roots of plants
8. Decline in uptake of carbon emissions confirmed
9. Study reveals that nitrogen fertilizers deplete soil organic carbon
10. US fires release large amounts of carbon dioxide
11. Wildfire drives carbon levels in northern forests
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/9/2016)... , March 9, 2016 ... government identified that more than 23,000 public service employees ... had been receiving their salary unlawfully.    --> ... country,s government identified that more than 23,000 public service ... or had been receiving their salary unlawfully.    ...
(Date:3/8/2016)...   Valencell , the leading innovator in ... secured $11M in Series D financing. The investment ... fund being launched by UAE-based financial services company ... TDF Ventures and WSJ Joshua Fund. Valencell plans ... growth and accelerate its pioneering innovation in accurate ...
(Date:3/3/2016)... , March 3, 2016  2016FLEX, organized ... this week highlighting advancements in flexible, hybrid and ... record setting attendance - have gathered for short ... fast-growing field of electronics. The Flex Conference celebrates ... point for companies, R&D organizations, and universities contributing ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... ... May 25, 2016 , ... Thailand’s Board of Investment’s ... in San Francisco. Located at booth number 7301, representatives from the Thai Government, ... discuss the Thai biotechnology and life sciences sector. , Deputy Secretary General ...
(Date:5/25/2016)... , ... May 25, 2016 , ... WEDI, the nation’s ... exchange, today announced that Charles W. Stellar has been named by the WEDI Board ... since January 2016. As an executive leader with more than 35 years of experience ...
(Date:5/24/2016)... ... May 24, 2016 , ... Last week, Callan Capital, an ... and entrepreneurs, held The Future of San Diego Life Science event at the Estancia ... science community attended the event with speakers Dr. Rich Heyman, former CEO of Aragon ...
(Date:5/23/2016)... England , May 23, 2016 ... May 25 th at 10:15 a.m. ET before the ... the role genetically engineered mosquitos can play in controlling the ... carrier of the Zika virus.      (Logo: ... engineered male mosquito with a self-limiting gene. Trials in ...
Breaking Biology Technology: