Navigation Links
Cancers' sweet tooth may be weakness
Date:11/18/2009

The pedal-to-the-metal signals driving the growth of several types of cancer cells lead to a common switch governing the use of glucose, researchers at Winship Cancer Institute of Emory University have discovered.

Scientists who study cancer have known for decades that cancer cells tend to consume more glucose, or blood sugar, than healthy cells. This tendency is known as the "Warburg effect," honoring discoverer Otto Warburg, a German biochemist who won the 1931 Nobel Prize in Medicine. Now a Winship-led team has identified a way to possibly exploit cancer cells' taste for glucose.

The results were published this week in the journal Science Signaling.

Normally cells have two modes of burning glucose, comparable to sprinting and long-distance running: glycolysis, which doesn't require oxygen and doesn't consume all of the glucose molecule, and oxidative phosphorylation, which requires oxygen and is more thorough.

Cancer cells often outgrow their blood supply, leading to a lack of oxygen in a tumor, says Jing Chen, PhD, assistant professor of hematology and medical oncology at Emory University School of Medicine and Winship Cancer Institute. They also benefit from glycolysis because leftovers from the inefficient consumption of glucose can be used as building blocks for growing cells.

"Even if they have oxygen, cancer cells still prefer glycolysis," Chen says. "They depend on it to grow quickly."

Working with Chen, postdoctoral researcher Taro Hitosugi focused on the enzyme PKM2 (pyruvate kinase M2), which governs the use of glucose and controls whether cells make the switch between glycolysis and oxidative phosphorylation. PKM2 is found predominantly in fetal cells and in tumor cells.

In many types of cancer, mutations lead to over-activation of proteins called tyrosine kinases. Chen's team showed that tyrosine kinases turn off PKM2 in lung, breast, prostate and blood cancers. Introducing a form of PKM2 that is not sensitive to tyrosine kinases into cancer cells forces them to grow slower and be more dependent on oxygen, they found.

Because the active form of PKM2 consists of four protein molecules stuck together, having a tyrosine kinase flip the "off" switch on one molecule can dampen the activity for the others.

"People knew that tyrosine kinases might modify PKM2 for decades but they didn't think it mattered," Chen says. "We showed that such a modification is important and you even don't need that much modification of PKM2 to make a difference in the cells' metabolism."

PKM2 could be a good drug target, because both inhibiting it or activating it can slow down cancer cell growth. Biotechnology companies are already searching for ways to do so, Chen says.


'/>"/>

Contact: Vince Dollard
vdollar@emory.edu
404-778-4580
Emory University
Source:Eurekalert

Related biology news :

1. Loss of tumor supressor gene essential to transforming benign nerve tumors into cancers
2. New blood tests promise simple, cost-effective diagnosis of gastrointestinal cancers
3. Fox Chase researchers uncover one force behind the MYC oncogene in many cancers
4. Possible drug target found for one of the most aggressive breast cancers
5. Newly discovered epidermal growth factor receptor active in human pancreatic cancers
6. NC State researchers find soy may aid in treating canine cancers
7. Ireland Cancer Center researcher finds most triple-negative breast cancers express muc-1 target
8. Oral rinses used for tracking HPV-positive head and neck cancers holds promise for cancer screening
9. On the trail of a targeted therapy for blood cancers
10. H. Pylori bacteria may help prevent some esophageal cancers
11. Researchers identify cancer-causing gene in many colon cancers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
(Date:4/3/2017)... , April 3, 2017  Data ... precision engineering platform, detected a statistically significant ... product prior to treatment and objective response ... the potential to predict whether cancer patients ... to treatment, as well as to improve ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):
(Date:6/26/2017)... ... June 26, 2017 , ... NDA ... former Associate Director of Product Development R&D at Allergan and CMC expert with ... both start-up and established biopharma companies, has joined the firm as an Expert ...
(Date:6/26/2017)... ... June 26, 2017 , ... The Workgroup for Electronic Data ... to create efficiencies in healthcare information exchange and a statutory advisor to the U.S. ... of the federal Office of the National Coordinator for Health Information Technology, will deliver ...
(Date:6/23/2017)... ... June 23, 2017 , ... Biova, LLC., the leader in ... Biova’s Board of Directors. Dr. Henig will bring a wealth of scientific experience in ... as the Chief Technical and Scientific Officer of four major global companies in the ...
(Date:6/23/2017)... ... 23, 2017 , ... Ken Hanson, a medical imaging research scientist at Los ... selected as this year’s recipients of two top awards from SPIE, the international ... other honorees to accept their awards at a banquet in San Diego, California, on ...
Breaking Biology Technology: