Navigation Links
Cancer scientists discover new way breast cancer cells adapt to environmental stress
Date:5/14/2011

(Toronto May 15, 2011) An international research team led by Dr. Tak Mak, Director, The Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital (PMH), has discovered a new aspect of "metabolic transformation", the process whereby tumour cells adapt and survive under conditions that would kill normal cells.

The findings, published today in Genes and Development (http://www.genesdev.org/cgi/doi/10.1101/gad.1987211), show how breast cancer cells can thrive when deprived of their usual diet of glucose (sugar) and oxygen by turning to fatty acids for energy generation.

"Our results demonstrate that a protein not previously associated with breast cancer is involved in helping these cells to adapt to starvation conditions and to continue their uncontrolled growth," says Dr. Mak, principal investigator and Weekend to End Breast Cancer Chair in Breast Cancer Research at PMH. Dr. Mak is also a Professor at the University of Toronto in the Departments of Medical Biophysics and Immunology.

In the lab, researchers used an anticancer drug called rapamycin to block a molecular signalling pathway within breast cancer cells that stimulates sugar metabolism. However, instead of dying of starvation, the cells continued to multiply. The team also observed an increase in these cells of carnitine palmitoyltransferase 1C (CPT1C), a protein usually found only in the brains of healthy individuals. Moreover, cells engineered to produce high levels of CPT1C were also able to adapt their metabolism as a survival technique.

"In other words," says Dr. Mak, "The cancer cells acted like cheaters on a diet and found a new food source in fatty acids.

"The fact that CPT1C becomes expressed under conditions of metabolic stress highlights the resilience of cancer cells. They are able to adapt to environmental challenges and find alternative sources of food in order to flourish where healthy cells would not survive."

"Our discovery that deprivation of either sugar or oxygen spurs CPT1C expression in tumour cells marks this protein as a potential target for new drug development," says Dr. Mak.

"We also demonstrated that cells that were prevented from using CPT1C to cope with a disruption in sugar metabolism became more sensitive to environmental stress. These findings represent an important stepping stone to developing targeted therapies that can block cancer cells from adapting to environmental challenges and surviving efforts to kill them."

This most recent discovery builds on Dr. Mak's impressive body of work, which has led to important breakthroughs in immunology and our understanding of cancer at the molecular level. Dr. Mak is internationally renowned for his 1984 landmark scientific paper on the cloning of the genes for the T cell receptor, a key component of the human immune system.


'/>"/>

Contact: Geoff Koehler
geoff.koehler@uhn.on.ca
416-340-4800
University Health Network
Source:Eurekalert

Related biology news :

1. AAPS national biotechnology conference to highlight breakthrough cancer treatments
2. UT Southwestern researchers find protein that might be key to cutting cancer cells blood supply
3. Yale researchers explain why cancer smart drugs may not be so smart
4. Microbubble-delivered combination therapy eradicates prostate cancer in vivo
5. Parsley, celery carry crucial component for fight against breast cancer, MU researcher finds
6. Medusa-structure of gene regulatory network: Dominance of transcription factors in cancer subtypes
7. UT Southwestern research reveals how cancer-driving enzyme works
8. Einstein researchers find key gene in childhood cancer
9. Racial disparities still exist in colorectal cancer screening despite increased Medicare coverage
10. Hitting target in cancer fight now easier with new nanoparticle platform, UCLA scientists say
11. High percentage of omega-3s in the blood may boost risk of aggressive prostate cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/20/2016)... and GENEVA, Dec, 20, 2016   Valencell ... sensor technology, and STMicroelectronics (NYSE: STM), a ... of electronics applications, announced today the launch of ... for biometric wearables that includes ST,s compact ... Valencell,s Benchmark™ biometric sensor system. Together, SensorTile ...
(Date:12/16/2016)... , Dec 16, 2016 Research and ... System Market - Global Forecast to 2021" report to their ... The ... to grow at a CAGR of 14.06% from 2016 to 2021. ... and is projected to reach 854.8 Million by 2021. The growth ...
(Date:12/15/2016)... , Dec. 15, 2016   WaferGen Bio-systems, Inc. ... genomics technology company, announced today that on December 13, ... Department of The Nasdaq Stock Market LLC which acknowledged ... price of WaferGen,s common stock had been at $1.00 ... has regained compliance with Listing Rule 5550(a)(2) of the ...
Breaking Biology News(10 mins):
(Date:1/12/2017)... 12, 2017   Protein Sciences Corporation , ... Flublok Influenza Vaccine ®, announced today that ... good safety results and induced strong neutralizing antibodies ... product is expected to advance into human clinical ... the Institute of Technology in Immunobiologicals of the ...
(Date:1/12/2017)... , ... January 12, 2017 ... ... rapid adoption of Limfinity® Cloud, RURO has enhanced the platform to accommodate ... groups, federated login, rapid data searching, and more. In addition to these ...
(Date:1/11/2017)... ... January 11, 2017 , ... As a ... Peru studying the pathogens that cause malaria and tuberculosis. Seeing firsthand the ravages ... discovery. , Now, as an assistant professor of biology and biotechnology at Worcester ...
(Date:1/11/2017)... Yorba Linda, Ca (PRWEB) , ... January 11, ... ... in the U.S. each year and costing healthcare systems more than $23.7 billion, ... patients while controlling costs. , Among the most common sepsis-causing pathogens are ...
Breaking Biology Technology: