Navigation Links
Cancer scientists discover new way breast cancer cells adapt to environmental stress
Date:5/14/2011

(Toronto May 15, 2011) An international research team led by Dr. Tak Mak, Director, The Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital (PMH), has discovered a new aspect of "metabolic transformation", the process whereby tumour cells adapt and survive under conditions that would kill normal cells.

The findings, published today in Genes and Development (http://www.genesdev.org/cgi/doi/10.1101/gad.1987211), show how breast cancer cells can thrive when deprived of their usual diet of glucose (sugar) and oxygen by turning to fatty acids for energy generation.

"Our results demonstrate that a protein not previously associated with breast cancer is involved in helping these cells to adapt to starvation conditions and to continue their uncontrolled growth," says Dr. Mak, principal investigator and Weekend to End Breast Cancer Chair in Breast Cancer Research at PMH. Dr. Mak is also a Professor at the University of Toronto in the Departments of Medical Biophysics and Immunology.

In the lab, researchers used an anticancer drug called rapamycin to block a molecular signalling pathway within breast cancer cells that stimulates sugar metabolism. However, instead of dying of starvation, the cells continued to multiply. The team also observed an increase in these cells of carnitine palmitoyltransferase 1C (CPT1C), a protein usually found only in the brains of healthy individuals. Moreover, cells engineered to produce high levels of CPT1C were also able to adapt their metabolism as a survival technique.

"In other words," says Dr. Mak, "The cancer cells acted like cheaters on a diet and found a new food source in fatty acids.

"The fact that CPT1C becomes expressed under conditions of metabolic stress highlights the resilience of cancer cells. They are able to adapt to environmental challenges and find alternative sources of food in order to flourish where healthy cells would not survive."

"Our discovery that deprivation of either sugar or oxygen spurs CPT1C expression in tumour cells marks this protein as a potential target for new drug development," says Dr. Mak.

"We also demonstrated that cells that were prevented from using CPT1C to cope with a disruption in sugar metabolism became more sensitive to environmental stress. These findings represent an important stepping stone to developing targeted therapies that can block cancer cells from adapting to environmental challenges and surviving efforts to kill them."

This most recent discovery builds on Dr. Mak's impressive body of work, which has led to important breakthroughs in immunology and our understanding of cancer at the molecular level. Dr. Mak is internationally renowned for his 1984 landmark scientific paper on the cloning of the genes for the T cell receptor, a key component of the human immune system.


'/>"/>

Contact: Geoff Koehler
geoff.koehler@uhn.on.ca
416-340-4800
University Health Network
Source:Eurekalert

Related biology news :

1. AAPS national biotechnology conference to highlight breakthrough cancer treatments
2. UT Southwestern researchers find protein that might be key to cutting cancer cells blood supply
3. Yale researchers explain why cancer smart drugs may not be so smart
4. Microbubble-delivered combination therapy eradicates prostate cancer in vivo
5. Parsley, celery carry crucial component for fight against breast cancer, MU researcher finds
6. Medusa-structure of gene regulatory network: Dominance of transcription factors in cancer subtypes
7. UT Southwestern research reveals how cancer-driving enzyme works
8. Einstein researchers find key gene in childhood cancer
9. Racial disparities still exist in colorectal cancer screening despite increased Medicare coverage
10. Hitting target in cancer fight now easier with new nanoparticle platform, UCLA scientists say
11. High percentage of omega-3s in the blood may boost risk of aggressive prostate cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/2/2016)... 2, 2016 Checkpoint Inhibitors for Cancer ... Are you interested in the future of ... checkpoint inhibitors. Visiongain,s report gives those predictions to ... national level. Avoid falling behind in data ... and revenues those emerging cancer therapies can achieve. ...
(Date:2/1/2016)... , February 1, 2016 ... advancements to drive global touchfree intuitive gesture control market ... --> Rising sales of consumer electronics coupled with ... control market size through 2020 ... electronics coupled with new technological advancements to drive global ...
(Date:1/27/2016)... 2016  Rite Track, Inc. a leading semiconductor equipment ... Chester, Ohio announced today the acquisition of PLUS ... in Austin, Texas , will significantly ... modifications, installations and technical support offerings for TEL Track ... commented, "PLUS has provided world class service including refurbishment, ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... 10, 2016  Matchbook, Inc., a company specializing ... biotech companies, announced today the appointment of ... Jim brings nearly 25 years of experience in ... spent nearly two decades in executive level roles ... at Genzyme and, most recently headed global logistics ...
(Date:2/10/2016)... NY (PRWEB) , ... February 10, 2016 , ... LATHAM, ... packages at the SPIE Photonics West conference in San Francisco’s Moscone Center ... 14 in the same venue. , These latest InGaAs PIN diode standard packages ...
(Date:2/10/2016)... ... February 10, 2016 , ... ... Microsoft Azure. On Azure, Arvados provides capabilities for managing and processing genomic and ... Microsoft Azure from major institutions collecting and analyzing genomic data,” said Adam Berrey ...
(Date:2/10/2016)... ... February 09, 2016 , ... Creation Technologies, leading global ... Highest Overall Customer Rating Award from Circuits Assembly , today announced its milestone ... USA, Canada, Mexico and China. , The EMS provider, known in the EMS ...
Breaking Biology Technology: