Navigation Links
Caltech scientists point to link between missing synapse protein and abnormal behaviors
Date:11/23/2011

PASADENA, Calif. -- Although many mental illnesses are uniquely human, animals sometimes exhibit abnormal behaviors similar to those seen in humans with psychological disorders. Such behaviors are called endophenotypes. Now, researchers at the California Institute of Technology (Caltech) have found that mice lacking a gene that encodes a particular protein found in the synapses of the brain display a number of endophenotypes associated with schizophrenia and autism spectrum disorders.

The new findings appear in a recent issue of the Journal of Neuroscience, with Mary Kennedy, the Allen and Lenabelle Davis Professor of Biology at Caltech, as the senior author.

The team created mutations in mice so that they were missing the gene for a protein called densin-180, which is abundant in the synapses of the brain, those electro-chemical connections between one neuron and another that enable the formation of networks between the brain's neurons. This protein sticks to and binds together several other proteins in a part of the neuron that's at the receiving end of a synapse and is called the postsynapse. "Our work indicates that densin-180 helps to hold together a key piece of regulatory machinery in the postsynaptic part of excitatory brain synapses," says Kennedy.

In mice lacking densin-180, the researchers found decreased amounts of some of the other regulatory proteins normally located in the postsynapse. Kennedy and her colleagues were especially intrigued by a marked decrease in the amount of a protein called DISC1. "A mutation that leads to loss of DISC1 function has been shown to predispose humans to development of schizophrenia and bipolar disorder," Kennedy says.

In the study, the researchers compared the behavior of typical mice with that of mice lacking densin. Those without densin displayed impaired short-term memory, hyperactivity in response to novel or stressful situations, a deficit of normal nest-building activity, and higher levels of anxiety. "Studies of mice with schizophrenia and autism-like features have reported similar behaviors," Kennedy notes.

"We do not know precisely how the molecular defect leads to the behavioral endophenotypes. That will be our work going forward," Kennedy says. "The molecular mechanistic links between a gene defect and defective behavior are complicated and, as yet, mostly unknown. Understanding them goes to the very heart of understanding brain function."

Indeed, she adds, the findings point to the need for a better understanding of the interactions that occur between proteins at synapses. Studies of these interactions could provide information needed to screen for new and better pharmaceuticals for the treatment of mental illnesses. "This study really reinforces the idea that small changes in the molecular structures at synapses are linked to major problems with behavior," Kennedy says.


'/>"/>
Contact: Deborah Williams-Hedges
debwms@caltech.edu
626-395-3227
California Institute of Technology
Source:Eurekalert  

Related biology news :

1. Caltech researchers find pulsating response to stress in bacteria
2. Caltech engineers build smart petri dish
3. Caltech researchers increase the potency of HIV-battling proteins
4. Think healthy, eat healthy: Caltech scientists show link between attention and self-control
5. Caltech researchers create the first artificial neural network out of DNA
6. Caltech scientist awarded $5 million grant for plant research
7. Caltech researchers build largest biochemical circuit out of small synthetic DNA molecules
8. 2011 HFSP Nakasone Award for Michael Elowitz of Caltech
9. Young Caltech engineers recognized for innovative work in disease diagnostic technologies
10. Tip sheet: Caltech researchers presenting at AAAS
11. Caltech-led team creates damage-tolerant metallic glass
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Caltech scientists point to link between missing synapse protein and abnormal behaviors
(Date:10/4/2017)... Oct. 4, 2017  GCE Solutions, a global clinical research organization ... document anonymization solution on October 4, 2017. Shadow is designed to ... comply with policy 0070 of the European Medicines Agency (EMA) in ... ... ...
(Date:8/15/2017)... , Aug. 15 2017   ivWatch LLC , a medical ... (IV) therapy, today announced receipt of its ISO 13485 Certification, the ... the International Organization for Standardization (ISO®). ... ivWatch Model 400 Continuous Monitoring device for the early detection ... "This is an important ...
(Date:6/30/2017)... 2017 Today, American Trucking Associations announced ... face and eye tracking software, became the newest ... "Artificial intelligence and advanced sensing ... a driver,s attentiveness levels while on the road.  ... detect fatigue and prevent potential accidents, which could ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced that ... SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 ... cross the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation ...
(Date:10/10/2017)... International research firm Parks Associates announced today that ... TMA 2017 Annual Meeting , October 11 in Scottsdale, ... security market and how smart safety and security products impact the competitive ... Parks Associates: Smart Home Devices: Main ... "The residential security market has experienced continued ...
(Date:10/9/2017)... ... October 09, 2017 , ... The award-winning American Farmer television series ... 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. , With global population ... challenge of how to continue to feed a growing nation. At the same time, ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... Hi-C metagenome deconvolution product, featuring the first commercially available Hi-C kit. Researchers ... perform Hi-C metagenome deconvolution using their own facilities, supplementing the company’s full-service ...
Breaking Biology Technology: