Navigation Links
Calcium waves help the roots tell the shoots
Date:4/3/2014

MADISON For Simon Gilroy, sometimes seeing is believing. In this case, it was seeing the wave of calcium sweep root-to-shoot in the plants the University of Wisconsin-Madison professor of botany is studying that made him a believer.

Gilroy and colleagues, in a March 24, 2014 paper in the Proceedings of the National Academy of Sciences, showed what long had been suspected but long had eluded scientists: that calcium is involved in rapid plant cell communication.

It's a finding that has implications for those interested in how plants adapt to and thrive in changing environments. For instance, it may help agricultural scientists understand how to make more salt- or drought-tolerant plants.

"How do you think plants live?" Gilroy asks. "If I poke you, I see an instant response. You move away. Plants live in a slightly different world. They are rooted to the ground, literally, and they respond to the world either by growing or creating chemicals."

Calcium is involved in transmitting information in the cells of humans and other animals, contracting muscles, sending nerve signals and more.

In plants, scientists believed it had to also play a role in processing information and sending rapid signals so that plants can respond quickly to their environments.

Imagine you are a plant being eaten by a caterpillar: "It's like a lion chewing your leg," says Gilroy. "If an insect is chewing your leaf, you're gone unless you determine something effective immediately."

But no one had ever been able to see it before. Even Gilroy's team found it by accident.

The team was using a specific calcium sensor they thought wasn't going to work. They speculated it could serve as a control in their studies.

The sensor's brightness changes in the presence of calcium, displayed on screen as a change from green to red through a process known as fluorescence resonance energy transfer, or FRET. Typically, this particular sensor is so sensitive to calcium it is nearly always red.

But when researchers applied stress to the tip of a plant's roots a high concentration of sodium chloride salt it triggered a wave of red that traveled rapidly from the root to the top of the plant.

"We were kind of like, 'Why is it even working?' says Gilroy. "It was probably telling us we were looking in the wrong realm. It's like we could only hear the people shouting and we couldn't hear the talking."

The calcium wave, a flush of red on an otherwise green palette, traveled on a scale of milliseconds, traversing about eight plant cells per second too quick to be explained by simple diffusion of salt.

"It fit with a lot of our models," Gilroy says. "But the idea that it's a wave is one step beyond what our models would predict."

Within 10 minutes of applying a small amount of salt to the plants' roots, typical stress response genes were turned on in the plant.

Also turned on was the machinery to make more of a protein channel called two pore channel 1 (TPC1). Within one-to-two minutes, there was 10 times more of the building blocks needed to make the channel, which is thought to be involved in calcium signaling.

Gilroy and his team then looked at plants with a defect in TPC1. They had a much slower calcium wave about 25 times slower than plants with normal TPC1. When they studied plants expressing more of the TPC1 protein, the calcium wave moved 1.7 times faster.

Plants with more channels also grew larger and contained more chlorophyll than plants with normal or mutated TPC1 when grown in salt water.

The protein channel is present in all land plants, says Gilroy, and it's found throughout the plant. This is one of the many reasons it surprised the team to learn the calcium wave moves only through specific cells in the plant, like electrical signals moving through nerve cells in humans and other animals.

"We weren't expecting that," Gilroy says. "It means specific cell types have specific functions there must be something special about those cells. We're really at the beginning."

The lab is now looking at the molecular machinery that makes up TPC1, to figure out how the parts of the channel work.

And now that the scientists know that calcium talks, the volume is turned up. The work is just getting started.

"We can hear the screaming," says Gilroy. "Now we're trying to see what the vocal chords are doing."


'/>"/>
Contact: Simon Gilroy
sgilroy@wisc.edu
608-262-4009
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. Loose coupling between calcium channels and sensors
2. Johns Hopkins scientists identify a key to bodys use of free calcium
3. New book on calcium techniques from Cold Spring Harbor Laboratory Press
4. Low levels of blood calcium in dairy cows may affect cow health and productivity, MU study finds
5. Calcium and vitamin D improve bone density in patients taking antiepileptic drugs
6. Calcium plus vitamin D supplementation does not reduce joint symptoms in postmenopausal women
7. Calcium linked to increased risk of heart disease and death in patients with kidney disease
8. Calcium and vitamin D help hormones help bones
9. Magnesium may be as important to kids bone health as calcium
10. Calculating phosphorus and calcium concentrations in meat and bone meal for pig diets
11. Dysfunction in cerebellar Calcium channel causes motor disorders and epilepsy
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/29/2017)... March 29, 2017  higi, the health IT company ... North America , today announced a Series ... acquisition of EveryMove. The new investment and acquisition accelerates ... tools to transform population health activities through the collection ... higi collects and secures data today on ...
(Date:3/27/2017)... , March 27, 2017  Catholic Health ... and Management Systems Society (HIMSS) Analytics for achieving ... Adoption Model sm . In addition, CHS previously ... U.S. hospitals using an electronic medical record (EMR). ... its high level of EMR usage in an ...
(Date:3/24/2017)... Research and Markets has announced the addition of the "Global ... to 2025" report to their offering. ... The Global Biometric Vehicle Access System Market ... the next decade to reach approximately $1,580 million by 2025. ... for all the given segments on global as well as regional ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017 ... London (ICR) and University of ... prognostic tool to risk-stratify patients with multiple myeloma (MM), in ... nine . The University of Leeds ... by Myeloma UK, and ICR will perform the testing services ...
(Date:10/10/2017)... ... , ... San Diego-based team building and cooking events company, Lajollacooks4u, has unveiled ... bold new look is part of a transformation to increase awareness, appeal to new ... , It will also expand its service offering from its signature gourmet cooking classes ...
(Date:10/10/2017)... , Oct. 10, 2017 International research firm Parks ... Strategy, will speak at the TMA 2017 Annual Meeting , October ... trends in the residential home security market and how smart safety and ... Parks ... "The residential ...
(Date:10/9/2017)... , Oct. 9, 2017  BioTech Holdings announced ... by which its ProCell stem cell therapy prevents ... ischemia.  The Company, demonstrated that treatment with ProCell ... limbs saved as compared to standard bone marrow ... HGF resulted in reduction of therapeutic effect.  ...
Breaking Biology Technology: