Navigation Links
'CYCLOPS' genes may serve as an Achilles' heel in tumor cells

BOSTON--The genomic tumult within tumor cells has provided scientists at Dana-Farber Cancer Institute and the Broad Institute of MIT and Harvard with clues to an entirely new class of genes that may serve as an Achilles' heel for many forms of cancer.

As reported in the Aug. 17 issue of the journal Cell, the researchers identified 56 such genes, only a few of which had previously been identified as potential targets for cancer therapy. Unlike most such targets, these genes don't cause normal cells to turn cancerous. Instead, they are essential to all cells but have been disrupted as cancer progresses.

"One of the hallmarks of cancer is genomic instability, in which entire sections of chromosomes can be lost or duplicated many times over," says Dana-Farber's Rameen Beroukhim, MD, PhD, who co-led the study. "The result is that genes residing in those areas are either deleted or significantly over-copied."

This roiling of the chromosomes often leads to partial loss of essential genes, leaving cancer cells with barely enough of these genes to survive. Such genes become lifelines for tumor cells. Blocking them with drug molecules is far more likely to harm cancer cells than normal cells.

One way that cancers lose these essential genes is by the loss of nearby tumor suppressor genes, which act as a brake against runaway cell growth. Whereas normal cells harbor two copies of each gene, cancers often lose at least one copy of important tumor suppressor genes, unleashing cell proliferation.

"When tumor suppressor genes are lost, it's common for several nearby genes -- which play no role in cancer development -- to be lost as well," explains the study's co-senior author William Hahn, MD, PhD, of Dana-Farber. Nearly 20 years ago, a scientist published a theory that blocking the remaining copies of these neighboring genes would cripple cancer cells' ability to grow and divide.

The author of that paper, in 1993, was Emil "Tom" Frei III, MD, who was Dana-Farber's director and physician-in-chief from 1972-1991. At the time, the tools didn't exist to determine whether the theory was valid. Only now, with the development of cutting-edge genomic technology, were researchers able to put it to the test.

Investigators began by scanning more than 3,100 samples of different types of cancers, and found that most were missing copies of genes across wide stretches of the genome. They then analyzed data from Project Achilles, a Dana-Farber research effort that has uncovered hundreds of genes critical to the reproduction of cancer cells.

Researchers combined both sets of data to find instances where the loss of one copy of a gene rendered the remaining copy especially important to the cancer cell. From an initial pool of 5,312 genes, researchers identified 56 that met the desired criteria. They dubbed them CYCLOPS genes (for Copy number alterations Yielding Cancer Liabilities Owing to Partial losS), evoking the mythical giant that was dependent on its one eye rather than the normal complement of two.

When researchers checked to see if any of the CYCLOPS genes were neighbors of missing tumor suppressor genes, as Frei had hypothesized two decades earlier, they found that, indeed, many were.

Investigators next surveyed the CYCLOPS genes to see if they have similar or divergent functions within the cell. "We found that they're heavily involved in the components of three critical cell structures: the spliceosome, the ribosome -- which use genetic information to construct proteins for the cell -- and the proteasome, which is a vital protein machine that disposes of unneeded protein material. This suggests that they're required for cell proliferation or survival," Hahn remarks.

When the researchers ranked the 56 CYCLOPS genes by the degree to which the cancer cells were dependent on them, the gene that topped the list was PSMC2. When they administered a PSMC2-blocking agent to mice whose tumors lacked a copy of the PSMC2 gene, the tumors shrank dramatically. "It was a powerful demonstration of the potential of CYCLOPS genes to serve as targets for cancer therapies," Beroukhim explains.

The fact that CYCLOPS genes are often neighbors of tumor suppressor genes makes them even more attractive as drug targets, the study authors say. Tumor suppressor genes themselves have proven exceedingly difficult to target. In cancers with missing copies of tumor suppressor genes, blocking nearby CYCLOPS genes offers a promising way to dampen cell proliferation.

"This study represents a bringing-together of two approaches to understanding the basic mechanics of cancer," Hahn states. "One involves research into the effect of gene copy number changes on cancer. The other is a systematic exploration of the function of individual genes.

"By combining these approaches, we've been able to identify a distinct class of cancer-cell vulnerabilities associated with the copy number loss of essential genes."


Contact: Anne Doerr
Dana-Farber Cancer Institute

Related biology news :

1. New key element discovered in pathogenesis of Burkitt lymphoma
2. Feces fossils yield new insights into ancient diets and thrifty genes
3. Single-cell parasites co-opt ready-made genes from host: UBC research
4. Exome sequencing of health condition extremes can reveal susceptibility genes
5. Genes may play role in educational achievement, study finds
6. World experts meet in Edinburgh to consider how life experiences impact on our genes
7. Parasitic plants steal genes from their hosts
8. Manipulating chromatin loops to regulate genes may offer future treatments for blood diseases
9. Its in the genes: Research pinpoints how plants know when to flower
10. CSHL researchers solve structure of human protein critical for silencing genes
11. Personality genes may help account for longevity
Post Your Comments:
Related Image:
'CYCLOPS' genes may serve as an Achilles' heel in tumor cells
(Date:10/27/2015)... -- Munich, Germany , October ... automatically maps data from mobile eye tracking videos created ... that they can be quantitatively analyzed with SMI,s analysis ... , October 28-29, 2015. SMI,s Automated Semantic Gaze ... tracking videos created with SMI,s Eye Tracking Glasses ...
(Date:10/26/2015)... 26, 2015 ... adds Biometrics Market Shares, Strategies ... well as Emerging Biometrics Technologies: Global ... its collection of IT and Telecommunications ... --> . ...
(Date:10/26/2015)... , Oct. 26, 2015  Delta ID Inc., ... authentication to mobile and PC devices, announced its ActiveIRIS® ... the arrows NX F-02H launched by NTT DOCOMO, INC ... F-02H is the second smartphone to include iris recognition ... in ARROWS NX F-04G in May 2015, world,s first ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... -- SHPG ) announced today that Jeff Poulton ... th Annual Healthcare Conference in New York City ... EST (1:30 p.m. GMT). --> SHPG ) announced today ... the Piper Jaffray 27 th Annual Healthcare Conference in ... 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ...
(Date:11/24/2015)... -- Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced that its Annual General Meeting ... Israel time, at the law offices of ... th Floor, Tel Aviv, Israel . ... Izhak Tamir to the Board of Directors; , election of ... approval of an amendment to certain terms of options granted to our ...
(Date:11/24/2015)... FRANCISCO , Nov. 24, 2015  Twist ... announced that Emily Leproust, Ph.D., Twist Bioscience chief ... Jaffray Healthcare Conference on December 1, 2015 at ... Hotel in New York City. --> ... . Twist Bioscience is on Twitter. ...
(Date:11/24/2015)... ... 24, 2015 , ... InSphero AG, the leading supplier of easy-to-use solutions for ... Aregger to serve as Chief Operating Officer. , Having joined InSphero in ... and was promoted to Head of InSphero Diagnostics in 2014. There she ...
Breaking Biology Technology: