Navigation Links
CWRU engineer to grow replacement tissue for torn rotator cuffs

A Case Western Reserve University engineer has won a $1.7 million National Institutes of Health (NIH) grant to grow replacement rotator cuffs and other large tendon groups to help heal injured soldiers and athletes, accident victims and an aging population that wants to remain active.

Ozan Akkus, professor of mechanical and aerospace engineering, has already devised a technique to reconstitute collagena building block of tendonsinto tough fibers and induce adult stem cells to grow into tendons on those fibers.

"This is a concept that works on a lab bench," Akkus said. "We will refine the concept and test the validity on an animal model."

"Following completion of that, we may be in position for clinical applications," he continued.

Tendons are the sinew that tie muscle to bone, enabling us to push and pull, run and jump or, in the case of the rotator cuff, throw a ball or a mundane task such as reaching up to a shelf. But the cuff is susceptible to wear and damage.

The American Academy of Orthopedic Surgeons reports that nearly 200,000 Americans require shoulder surgery to repair damaged rotator cuffs annually. The failure rate for repairs exceeds 20 percent, with the rate being highest for the largest tears.

A better fix

"A simple detachment, doctors suture back in place," Akkus said. "But if the body or bulk of the tendon is damaged and there is not enough tendon to reattach, we need to regenerate bulk volume of the tendon."

To achieve that, the NIH grant will allow Akkus and a team of doctors and researchers to conduct basic science and translational work during the next five years.

At the heart of tendons is collagen, which is in skin, teeth, bones and ligaments of many species and is therefore accepted by the immune system. But, "normally, when you reconstitute collagen, it's as strong as Jell-O," Akkus said. "For a tendon, that's not an option."

His lab uses electrical currents to align collagen threads, mimicking the natural tendon and making the threads dense and strong as a tendon. And his team can make threads in bulk, which would enable manufacturers to make spools of the materialenough to accommodate hundreds of thousands of surgeries.

Woven threads are sufficiently strong to be surgically handled and sutured in place and be fully load-bearing, Akkus said. "This would enable a patient to begin physical therapy and remobilization quickly," he said.

Growing tendon tissue

The threads alone could be used as sutures to repair simple tears. But when more tendon material is needed, adult mesenchymal stem cells placed on the aligned collagen differentiate toward tendon cells without highly regulated growth factors, which also carry undesirable side effects or other chemicals.

Akkus' lab will investigate why differentiation occurs and whether other factors, such as mechanical stress, may further induce the stem cells to develop into tendon.

They will also test whether mesenchymal stem cells in bone marrow could complete a repair. They will drill holes in bone, tie collagen scaffolds through the holes and try to coax stem cells to spread over the scaffold and grow.

If this fails, they will seed cells on a scaffold in a petri dish and allow them to grow for a few weeks before implanting the biomaterial.

The researchers believe the technology will be useful for more than tendons. For example, mesh sheets woven with controlled pore size and geometry could be used to repair hernias or urinary incontinence. Sheets of collagen could be cast in molds of an ear or nose, for replacements for patients who suffered trauma or devastating tumors.

In his tendon project, Akkus is working with graduate research assistants Mousa Younesi and Anowarul Islam. He is collaborating with James M. Anderson, professor of pathology at Case Western Reserve School of Medicine and assistant professor Robert Gillespie, orthopedic surgeon at University Hospitals Case Medical Center. Denitsa Docheva, the leader of the "TENDON" Research Group, Department of Surgery, Ludwig-Maximilians-University, Munich, Germany is consulted on the biology of stem cells and tendon cells. Three more faculty on staff at University Hospitals Case Medical Center are involved in other applications of the technology developed in Akkus' Lab: associate professor Adonis Hijaz, urologist; and assistant professors Chad Zender and Rod Rezaee, otolaryngologists.


Contact: Kevin Mayhood
Case Western Reserve University

Related biology news :

1. Exquisitely engineered human vision featured in Optical Engineering
2. Engineers design systems to help children with special needs
3. Climate engineering cant erase climate change
4. Engineering a better way to rebuild bone inside the body
5. UH awarded $2 million for new engineering professor
6. Engineers build worlds smallest, fastest nanomotor
7. No bioengineered gut bacteria, no glory
8. UH chemical engineer earns Early Career Award from DOE
9. Elsevier selected publish official journal: Engineering in Agriculture, Environment & Food
10. Having problems with your engineering project? This book will be your lifesaver
11. Columbia engineers grow functional human cartilage in lab
Post Your Comments:
Related Image:
CWRU engineer to grow replacement tissue for torn rotator cuffs
(Date:10/29/2015)... Mich. , Oct. 29, 2015  Rubicon ... Genomics for U.S. distribution of its DNA library ... kit and Rubicon,s new ThruPLEX Plasma-seq kit. ThruPLEX ... enable the preparation of NGS libraries for liquid ... for diagnostic and prognostic applications in cancer and ...
(Date:10/27/2015)... 27, 2015 In the present market scenario, ... for various industry verticals such as banking, healthcare, defense, ... growing demand for secure & simplified access control and ... as hacking of bank accounts, misuse of users, , ... as PC,s, laptops, and smartphones are expected to provide ...
(Date:10/26/2015)... PALO ALTO, Calif. and LAS ... – Nok Nok Labs , an innovator in ... FIDO Alliance , today announced the launch of its ... the first unified platform enabling organizations to use standards-based ... authentication. The Nok Nok S3 Authentication Suite is ideal ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. ... IIROC on behalf of the Toronto Stock Exchange, confirms ... there are no corporate developments that would cause the ... --> --> About Aeterna Zentaris ... . --> Aeterna Zentaris is a specialty ...
(Date:11/24/2015)... , ... November 24, 2015 , ... The Academy of ... Interest Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the First–Person ... few years. Many AMA members have embraced this type of racing and several new ...
(Date:11/24/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) ... remaining 11,000 post-share consolidation (or 1,100,000 pre-share consolidation) ... B Warrants") subject to the previously disclosed November ... 2015, which will result in the issuance of ... the issuance of such shares, there will be ...
(Date:11/24/2015)... ... November 24, 2015 , ... Creation Technologies ... being named to Deloitte's 2015 Technology Fast 500 list of the fastest growing ... a FDA-cleared, Class II medical device that speeds up orthodontic tooth movement by ...
Breaking Biology Technology: