Navigation Links
CU physicists use ultra-fast lasers to open doors to new technologies unheard of just years ago
Date:2/21/2010

For nearly half a century, scientists have been trying to figure out how to build a cost-effective and reasonably sized X-ray laser that could, among other things, provide super high-resolution imaging. And for the past two decades, University of Colorado at Boulder physics professors Margaret Murnane and Henry Kapteyn have been inching closer to that goal.

Recent breakthroughs by their team at JILA, a joint institute of CU-Boulder and the National Institute of Standards and Technology, have paved the way on how to build a tabletop X-ray laser that could be used for super high-resolution imaging, while also giving scientists a new way to peer into a single cell and gain a better understanding of the nanoworld.

Both of these feats could lead to major breakthroughs in many fields including medicine, biology and nanotechnology development.

"Our goal is to create a laser beam that contains a broad range of X-ray wavelengths all at once that can be focused both in time and space," Murnane said. "If we have this source of coherent light that spans a huge region of the electromagnetic spectrum, we would be able to make the highest resolution light-based tabletop microscope in existence that could capture images in 3-D and tell us exactly what we are looking at. We're very close."

Murnane and Kapteyn presented highlights of their research today at the American Association for the Advancement of Science, or AAAS, annual meeting in San Diego, during a panel discussion about the history and future of laser technology titled "Next Generation of Extreme Optical Tools and Applications."

Most of today's X-ray lasers require so much power that they rely on fusion laser facilities the size of football stadiums or larger, making their use impractical. Murnane and Kapteyn generate coherent laser-like X-ray beams by using an intense femtosecond laser and combining hundreds or thousands of visible photons together. And the key is they are doing it with a desktop-size system.

They can already generate laser-like X-ray beams in the soft X-ray region and believe they have discovered how to extend the process all the way into the hard X-ray region of the electromagnetic spectrum.

"If we can do this, it could lead to all kinds of possibilities," Kapteyn said. "It might make it possible to improve X-ray imaging resolution at your doctor's office by a thousand times. The X-rays we get in the hospital now are limited. For example, they can't detect really small cancers because the X-ray source in your doctor's office is more like a light bulb, not a laser. If you had a bright, focused laser-like X-ray beam, you could image with far higher resolution."

Their method can be thought of as a coherent version of the X-ray tube, according to Murnane. In an X-ray tube, an electron is boiled off a filament, then it is accelerated in an electric field before hitting a solid target, where the kinetic energy of the electron is converted into incoherent X-rays. These incoherent X-rays are like the incoherent light from a light bulb or flashlight -- they aren't very focused.

In the tabletop setup, instead of boiling an electron from a filament, they pluck part of the quantum wave function of an electron from an atom using a very intense laser pulse. The electron is then accelerated and slammed back into the ion, releasing its energy as an X-ray photon. Since the laser field controls the motion of the electron, the X-rays emitted can retain the coherence properties of a laser, Murnane said.

Being able to build a tabletop X-ray laser is just the beginning, said Kapteyn.

"An analogy that is pretty close to what is going on in this field is the MRI, which started as just a fundamental investigation," said Kapteyn. "People then started using it for microscopy, and then it progressed into a medical diagnostic technique."

Murnane and Kapteyn were recently recognized with the American Physical Society's Arthur L. Schawlow Prize in Laser Science for "pioneering work in the area of ultra-fast laser science, including development of ultra-fast optical and coherent soft X-ray sources." The prize, which was endowed by NEC Corporation in 1991, recognizes "outstanding contributions to basic research which uses lasers to advance our knowledge of the fundamental physical properties of materials and their interaction with light." Nobel laureates and CU-Boulder physics Professors Carl E. Wieman (1999) and John L. Hall (1993) also have won the award.


'/>"/>

Contact: Margaret Murnane
murnane@jila.colorado.edu
303-492-7839
University of Colorado at Boulder
Source:Eurekalert

Related biology news :

1. Digging deep into diamonds, applied physicists advance quantum science and technology
2. Rice physicists kill cancer with nanobubbles
3. Diamonds may be the ultimate MRI probe, say Quantum physicists
4. Louisiana Tech physicists highlight top 10 science stories of 2008
5. How do bacteria swim? Brown physicists explain
6. Penn biophysicists create new model for protein-cholesterol interactions in brain and muscle tissue
7. UC San Diego physicists tackle knotty puzzle
8. New Report Just Published: World Solid-State, Fiber, Gas and Dye Lasers Market Report
9. Healing wounds with lasers, vehicles that drive themselves, other cutting-edge optics
10. Researcher: Lasers used to detect melamine in baby formula
11. Scientists use lasers to measure changes to tropical forests
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/2/2016)... Dec. 1, 2016   SoftServe , a ... BioLock , an electrocardiogram (ECG) biosensor analysis system ... key IoT asset. The smart system ensures device-to-device ... steering wheel and mobile devices to easily ,recognize, ... As vehicle technology advances, so too must ...
(Date:11/29/2016)... 29, 2016   Neurotechnology , a ... recognition technologies, today released FingerCell 3.0, a ... solutions that run on low-power, low-memory microcontrollers. ... less than 128KB of memory, enabling it ... have limited on-board resources, such as: mobile ...
(Date:11/22/2016)... According to the new market research report "Biometric ... Signature, Voice), Multi-Factor), Component (Hardware and Software), Function (Contact and Non-contact), Application, ... is expected to grow from USD 10.74 Billion in 2015 to reach ... and 2022. Continue Reading ... ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... ... December 08, 2016 , ... ... their exceptionally efficient human mesenchymal stem/stromal cell (hMSC) expansion medium. This ... products engineered to radically streamline culture processes, minimize processing time, significantly decrease ...
(Date:12/8/2016)... Dec. 8, 2016  HedgePath Pharmaceuticals, Inc. (OTCQX: ... develops and plans to commercialize innovative therapeutics for ... common stock were approved for trading on the ... on the OTCQX, effective today, under the ticker ... OTCQX market, companies must meet high financial standards, ...
(Date:12/7/2016)... ... 07, 2016 , ... ACEA Biosciences, Inc. presented today updated ... trial for its lead drug candidate, AC0010, at the World Conference on Lung ... determine the safety, antitumor activity, and recommended phase II dosage of AC0010 in ...
(Date:12/7/2016)... Dec. 7, 2016 /PRNewswire/ - Zenith Capital Corp. ("Zenith" or the ... be presented at the Company,s Annual and Special Meeting. ... will take place on Thursday, December 15, 2016 at ... (Room EC1040), 4825 Mount Royal Gate SW, ... notice of meeting and management information circular, containing the matters ...
Breaking Biology Technology: