Navigation Links
CU-Boulder team identifies DNA "barcodes to help track illegal trading of wildlife products

Researchers from several institutions including the University of Colorado at Boulder have sequenced DNA "barcodes" for as many as 25 hunted wildlife species, providing information that can be used to better monitor the elusive trade of wildlife products, or bushmeat.

Identifying such DNA barcodes can help wildlife officials crack down on illegal bushmeat trafficking since many animal species are in sharp decline from illegal trade estimated to be worth $5 billion to $8 billion annually, said Andrew Martin, CU-Boulder associate professor of ecology and evolutionary biology and a study co-author. Barcodes also can help monitor legal harvest of tropical animals as researchers often use the composition of species in markets as an indication of the health of the wildlife community in forests.

"It's a really amazing study in which science brings together cultures and 
people living on separate continents faced with very different challenges," said 
Martin. "Barcoding is an essential tool for the identification of natural products and is becoming the technique of choice for monitoring wildlife trade. The ultimate goal is to have barcodes for every animal on the planet."

The DNA barcodes generated from the study have been added to an online, open-access repository called the Barcode of Life Data Systems and to the National Center for Biotechnology Information's GenBank library.

A paper of the findings was published in the September online edition of Conservation Genetics.

The DNA barcode system is valuable for its precision at the level of species, according to researchers. Without it, processed and prepared meats, hides and other goods are often unidentifiable once they reach the marketplace.

Enforcing wildlife laws such as those imposed by the Convention on the International Trade of Endangered Species or the U.S. Endangered Species Act will still be very difficult, or inefficient at best, said Martin. Suspected contraband must be confiscated and sent to a laboratory for gene sequencing, which typically requires days for results.

The team of scientists from CU-Boulder, Barnard College and the American Museum of Natural History used a region of a mitochondrial gene known as COX1 to generate DNA barcodes of 25 commonly traded mammal and reptile species in Africa, Central and South America. The study included Old World monkeys, alligators, crocodiles, antelope and wild pigs.

The COX1 gene is agreed upon by scientists as a viable segment of the genome to use in barcoding, said Martin. The COX1 gene is a relatively small DNA segment in which mutation is rapid enough to distinguish closely related species but also slow enough that individuals within the same species have similar barcodes.

Research took place at CU-Boulder laboratories, the American Museum of Natural History in New York and in the field with the collection of hundreds of blood and tissue samples. The U.S. Fish and Wildlife Service also provided specimens from confiscations of leather handbags, belts and shoes.

Mitchell Eaton, who led the research as a doctoral student at CU-Boulder, said technologies to support rapid or automated DNA barcoding have yet to be developed but the first step is for scientists to build a catalog of barcodes. "This is not something where you can wave a scanner over a piece of meat in an airport to know the animal's identity, that kind of technology is well into the future."

Eaton is now affiliated with the Patuxent Wildlife Research Center of the U.S. Geological Survey.

Monitoring illegal wildlife trafficking is not the only purpose of DNA barcodes. The codes also can furnish information on diversity in ecosystems, invasive species, pathogens in food supplies and the impact hunting by humans has on forest wildlife, according to the researchers.

"Much of the wildlife harvest in tropical countries is legal and supports rural inhabitants who have few other options for obtaining protein," said Eaton. "Because subsistence harvest and the more insidious forms of commercial hunting are both largely unregulated, ecologists and conservationists would like to better understand the extent and impact of the use of wildlife resource in these regions."

"Collecting samples for genetic barcoding will provide a means for more accurate species identification and a better understanding of hunting impacts on species abundance and composition," said Eaton.

The DNA barcoding in the study was successful enough to individually identify closely related species that previously had been lumped together, said Martin. The team is hoping to modify the length of barcode sequences to increase the success rate of species identification from processed leather products, which is currently a challenge due to high levels of DNA degradation.


Contact: Andrew Martin
University of Colorado at Boulder

Related biology news :

1. CU-Boulder team discovers first ancient manioc fields in Americas
2. Nutrient pollution drives frog deformities by ramping up infections, says CU-Boulder study
3. CU-Boulder worm study sheds light on human aging, inherited diseases
4. CU-Boulder technology used to identify unexpected bacteria in cystic fibrosis patients
5. Conservation strategies must shift with global environmental change, says CU-Boulder study
6. Dust in West up 500 percent in past 2 centuries, says CU-Boulder study
7. Regional nuclear conflict would create near-global ozone hole, says CU-Boulder study
8. Low-gravity training machine reduces joint, muscle impacts, says CU-Boulder study
9. CU-Boulder, biotech firm team up on python project in search for human cardiac therapeutics
10. Biological invasions increasing due to freshwater impoundments, says CU-Boulder study
11. As Andean glacier retreats, tiny life forms swiftly move in, CU-Boulder study shows
Post Your Comments:
(Date:11/19/2015)... , Nov. 19, 2015  Although some 350 companies ... dominated by a few companies, according to Kalorama Information. These ... 51% of the market share of the 6.1 billion-dollar ... The World Market for Molecular Diagnostic s .    ... market is still controlled by one company and only ...
(Date:11/18/2015)... ALBANY, New York , November 18, 2015 /PRNewswire/ ... Transparency Market Research has published a new market report ... Share, Growth, Trends, and Forecast, 2015 - 2021. According to ... bn in 2014 and is anticipated to reach US$29.1 ... 2015 to 2021. North America ...
(Date:11/17/2015)... , November 17, 2015 ... 19 novembre  2015.  --> Paris , ... --> DERMALOG, le leader de l,innovation biométrique, a ... fois passeports et empreintes sur la même surface de ... passeports et l,autre pour les empreintes digitales. Désormais, un ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... 2015  PharmAthene, Inc. (NYSE MKT: PIP) announced  today ... rights plan (Rights Plan) in an effort to preserve ... under Section 382 of the Internal Revenue Code (Code). ... use of its NOLs could be substantially limited if ... Section 382 of the Code. In general, an ownership ...
(Date:11/25/2015)... 2015  Neurocrine Biosciences, Inc. (Nasdaq: NBIX ) ... CEO of Neurocrine Biosciences, will be presenting at the ... New York . .   ... 5 minutes prior to the presentation to download or ... will be available on the website approximately one hour ...
(Date:11/25/2015)... 2015 The Global Genomics ... professional and in-depth study on the current state ... ) , The report ... definitions, classifications, applications and industry chain structure. The ... markets including development trends, competitive landscape analysis, and ...
(Date:11/24/2015)... Calif. , Nov. 24, 2015 Cepheid ... will be speaking at the following conference, and invited ... New York, NY      Tuesday, December 1, 2015 ... New York, NY      Tuesday, December 1, 2015 ... Jaffray Healthcare Conference, New York, NY ...
Breaking Biology Technology: