Navigation Links
CSHL study finds short- and long-term memories require same gene but in different circuits

Cold Spring Harbor, N.Y. Why is it that you can instantly recall your own phone number but have to struggle with your mental Rolodex to remember a new number you heard a few moments ago? The two tasks "feel" different because they involve two different types of memory long-term and short-term, respectively that are stored very differently in the brain. The same appears to be true across the animal kingdom, even in insects such as the fruit fly.

Assistant Professor Josh Dubnau, Ph.D., of Cold Spring Harbor Laboratory (CSHL) and his team have uncovered an important molecular and cellular basis of this difference using the fruit fly as a model. The results of their study appear in the August 25 issue of Current Biology.

The CSHL team has found that when fruit flies learn a task, each of two different groups of neurons that are part of the center of learning and memory in the fly brain simultaneously forms its own unique memory signal or trace. Both types of trace, the team discovered, depend on the activity of a gene called rutabaga, of which humans also have a similar version. A rapidly occurring, short-lived trace in a group of neurons that make up a structure called the "gamma" (γ) lobe produces a short-term memory. A slower, long-lived trace in the "alpha-beta" (αβ) lobe fixes a long-term memory.

A tale of two lobes

Neuroscientists call the rutabaga gene a coincidence detector because it codes for an enzyme whose activity levels get a big boost when a fly perceives two stimuli that it has to learn to associate with one another. This enzymatic activity in turn signals to other genes critical for learning and memory.

A classic experiment that teaches flies to associate stimuli and one that the CSHL team used is to place them in a training tube attached to an electric grid, and to administer shocks through the grid right after a certain odor is piped into the tube. Flies with normal rutabaga genes learn to associate the odor with the shock and if given a choice, buzz away from the grid. But flies that carry a mutated version of rutabaga in their brains lack both short- and long-term memory, don't learn the association, and so fail to avoid the shocks.

The team has now found, however, that this total memory deficit does not occur when flies carry the mutated version in either the γ or in the αβ lobes. Flies in which normal rutabaga function was restored within the γ lobe alone regained short-term memory but not long-term memory. Restoring the gene's function in the αβ lobe alone restored long-term memory, but not short-term memory.

Long- and short-term memory involve different circuits

"This ability to independently restore either short- or long-term memory depending on where rutabaga is expressed supports the idea that there are different anatomical and circuit requirements for different stages of memory," Dubnau explains. It also challenges a previously held notion that neurons that form short-term memory are also involved in storing long-term memory.

Previous biochemical studies have suggested that rapid, short-lived signals characteristic of short-term memory cause unstable changes in a neuron's connectivity that are then stabilized by slower, long-lasting signals that help establish long-term memory in the same neuron. But anatomy studies have long hinted at different circuits. Surgical lesions that destroy different parts of an animal's brain can separately disrupt the two kinds of memory, suggesting that the two memory types might involve different neuronal populations.

"We've now used genetics as a finer scalpel than surgery to reconcile these findings," Dubnau says. His team's results suggest that biochemical signaling for both types of memory are triggered at the same time, but in different neuron sets. Memory traces form more quickly in one set than the other, but the set that lags behind consolidates the memory and stores it long-term.

Why two mechanisms?

But why might the fly brain divide up the labor of storing different memory phases this way? Dubnau's hunch is that it might be because for every stimulus it receives, the brain creates its own representation of this information. And each time this stimulus for example, an odor is perceived again, the brain adds to the representation and modifies it. "Such modifications might eventually disrupt the brain's ability to accurately remember that information," Dubnau speculates. "It might be better to store long-term memories in a different place where there's no such flux."

The team's next mission is to determine how much cross talk, if any, is required between the two lobes for long-term memory to get consolidated. This work will add to the progress that scientists have already made in treating memory deficits in humans with drugs aimed at molecular members of the rutabaga-signaling pathway to enhance its downstream effects.


Contact: Hema Bashyam
Cold Spring Harbor Laboratory

Related biology news :

1. Water quality improves after lawn fertilizer ban, study shows
2. Study supports DNA repair-blocker research in cancer therapy
3. K-State lab gives researchers the tools to study porcine circovirus associated diseases
4. New study shows that cocoa flavanols can be preserved during cooking and baking
5. New study suggests possible genetic links between environmental toxins and multiple myeloma
6. New study reveals unexpected relationship between climate warming and advancing treelines
7. Stimulus funding helps K-State biochemist study eyes lens in diabetes, galactosemia patients
8. U of M study identifies risk factors of disordered eating in overweight youth
9. K-State researcher, collaborators study virulence of pandemic H1N1 virus
10. Study links virus to some cases of common skin cancer
11. Douglas-fir, geoducks make strange bedfellows in studying climate change
Post Your Comments:
(Date:11/20/2015)... 20, 2015 NXTD ) ("NXT-ID" ... the growing mobile commerce market and creator of the ... , was recently interviewed on The RedChip Money ... this weekend on Bloomberg Europe , Bloomberg Asia, ... --> NXTD ) ("NXT-ID" or the "Company"), a ...
(Date:11/18/2015)... Nov. 18, 2015  As new scientific discoveries deepen ... and other healthcare providers face challenges in better using ... patients. In addition, as more children continue to survive ... adulthood and old age. John M. Maris, ... Hospital of Philadelphia (CHOP) . --> ...
(Date:11/17/2015)... November 17, 2015 Paris ... 2015.  --> Paris , qui ... DERMALOG, le leader de l,innovation biométrique, a inventé ... passeports et empreintes sur la même surface de balayage. ... et l,autre pour les empreintes digitales. Désormais, un seul ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... San Francisco, CA (PRWEB) , ... November 25, ... ... leading microbial genomics company uBiome, were featured on AngelList early in their initial ... by launching an AngelList syndicate for individuals looking to make early stage investments ...
(Date:11/24/2015)... 24, 2015 /CNW/ - iCo Therapeutics ("iCo" or "the ... results for the quarter ended September 30, 2015. ... dollars and presented under International Financial Reporting Standards ... ," said Andrew Rae , President & ... are not only value enriching for this clinical ...
(Date:11/24/2015)... 24, 2015 --> ... report "Oligonucleotide Synthesis Market by Product & Services (Primer, ... Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic ... the market is expected to reach USD 1,918.6 Million ... a CAGR of 10.1% during the forecast period. ...
(Date:11/24/2015)... Technologies Ltd. (OTCQB: TIKRF) today announced that its Annual General Meeting of ... Israel time, at the law offices of Goldfarb ... Floor, Tel Aviv, Israel . ... Tamir to the Board of Directors; , election of ... of an amendment to certain terms of options granted to our Chief ...
Breaking Biology Technology: