Navigation Links
CSHL scientists identify cells that promote formation of lethal lung metastases
Date:1/10/2008

Cold Spring Harbor, NY Cancer patients usually ask what can be done after a primary tumor has already spread, or metastasized, to other organs. In many cases, they learn, little can be done. Hence the importance of a discovery by scientists at Cold Spring Harbor Laboratory (CSHL) of a type of cell that regulates the transformation of small, dormant lung metastases into large, aggressive metastases the kind that kill cancer patients.

The cells that promote the metastatic transformation are called endothelial progenitor cells, or EPCs, and are found in the bone marrow. The CSHL research team reports in the January 11 issue of Science that EPCs regulate an angiogenic switch a key mechanism that causes formation of blood vessels in tumors and triggers tumor growth.

A majority of malignant primary tumors have already spread to other organs by the time they are clinically diagnosed, noted Vivek Mittal, Ph.D., head of the CSHL research team and corresponding author of the Science paper. Current efforts are focused on preventing metastatic spread, yet, paradoxically, insights have been lacking on how dormant metastatic lesions, after they have colonized distant organs, grow into large, lethal lesions.

Our study has focused on cells from primary tumors in mice that have spread and established micrometastases in secondary organs such as the lung, said Dingcheng Gao, Ph.D., a CSHL postdoctoral fellow and lead author of the Science paper. Weve dissected the heart of the angiogenic switch and demonstrated that micrometastases recruit EPCs from the bone marrow. These EPCs, in turn, regulate the angiogenic switch that activates blood-vessel growth and transforms these dormant lesions into life-threatening macrometastases.

Drs. Mittal, Gao and colleagues at CSHL showed in experimental mice that levels of a protein called Id-1 increase dramatically in EPCs when tumors are present. By using a technique called RNA interference, or RNAi, to block the expression of Id-1 in living animals, the team was able to prevent mobilization of EPCs to the site of metastasis, and thereby inhibit the angiogenic switch. This, in turn, interrupted the process in mice by which micrometastases are converted into lethal macrometastases. Notably, increased survival was noted in the tumor-bearing animals that were treated with this method. The next step is to perform a similar study in humans.

This study has raised the prospect of a novel therapeutic target, and suggests that selective targeting of EPCs, perhaps in combination with chemotherapy, may prove to be a clinically feasible approach in the treatment of people diagnosed with cancer that has metastasized to the lungs, Dr. Mittal said.

Past experiences have highlighted the challenges associated with therapies that target genetically mutant cancer cells. For instance, we know that cancer cells develop resistance to chemotherapeutic agents. We feel that approaches based on targeting the genetically stable components of the tumor microenvironment, such as the EPCs, need to be further explored for effective treatment of cancer.


'/>"/>

Contact: Jim Bono
bono@cshl.edu
516-367-8455
Cold Spring Harbor Laboratory
Source:Eurekalert

Related biology news :

1. Smithsonian scientists highlight environmental impacts of biofuels
2. Scientists find missing evolutionary link using tiny fungus crystal
3. Jefferson scientists studying the effects of high-dose vitamin C on non-Hodgkin lymphoma patients
4. Five young Hebrew University scientists win first competitive EU grants
5. Scientists find good news about methane bubbling up from the ocean floor
6. International scientists tackle obstacles to treating brain disorders
7. UC Irvine scientists find new way to sort stem cells
8. Top scientists meet for global conference on stem cell therapy for cardiovascular diseases
9. Physician-scientists seek solutions to reproductive problems related to chromosomal variations
10. CSHL scientists identify and repress breast cancer stem cells in mouse tissue
11. Scientists develop new measure of socioclimactic risk
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/4/2017)... April 4, 2017   EyeLock LLC , a ... the United States Patent and Trademark Office (USPTO) has ... the linking of an iris image with a face ... represents the company,s 45 th issued patent. ... very timely given the multi-modal biometric capabilities that have ...
(Date:3/30/2017)... -- The research team of The Hong Kong Polytechnic ... by adopting ground breaking 3D fingerprint minutiae recovery and matching technology, ... accuracy for use in identification, crime investigation, immigration control, security of ... ... A research team led by Dr ...
(Date:3/28/2017)... PUNE, India , March 28, 2017 ... (Analog, IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), ... Maintenance), Vertical, and Region - Global Forecast to 2022", ... 30.37 Billion in 2016 and is projected to reach ... 15.4% between 2017 and 2022. The base year considered ...
Breaking Biology News(10 mins):
(Date:5/21/2017)... CA (PRWEB) , ... May 19, 2017 , ... ... annual meeting and educational conference of the American Association of Bioanalysts (AAB) and ... Galleria Hotel in Houston. The conference reinforces AAB’s commitment to excellence in clinical ...
(Date:5/19/2017)... (PRWEB) , ... May 19, 2017 , ... ... QED Proof-of-Concept Program. Academic researchers with technologies ripe for commercialization, and who ... Jersey and Delaware, are encouraged to submit proposals. QED, now in its tenth ...
(Date:5/18/2017)... ... ... Clinical Supplies Management (“CSM”), a Great Point Partners II (“GPP”) portfolio company, ... has doubled in size over the past six months with the acquisition of businesses ... joins CSM as Chief Financial Officer. Roger has over 25 years of experience ...
(Date:5/18/2017)... (PRWEB) , ... May 17, 2017 , ... ... specializing in medical device compliance and commercialization, has just released version 9.0 of ... work into this latest version of Cockpit,” says David Cronin, CEO of Cognition. ...
Breaking Biology Technology: