Navigation Links
CSHL scientists identify cells that promote formation of lethal lung metastases
Date:1/10/2008

Cold Spring Harbor, NY Cancer patients usually ask what can be done after a primary tumor has already spread, or metastasized, to other organs. In many cases, they learn, little can be done. Hence the importance of a discovery by scientists at Cold Spring Harbor Laboratory (CSHL) of a type of cell that regulates the transformation of small, dormant lung metastases into large, aggressive metastases the kind that kill cancer patients.

The cells that promote the metastatic transformation are called endothelial progenitor cells, or EPCs, and are found in the bone marrow. The CSHL research team reports in the January 11 issue of Science that EPCs regulate an angiogenic switch a key mechanism that causes formation of blood vessels in tumors and triggers tumor growth.

A majority of malignant primary tumors have already spread to other organs by the time they are clinically diagnosed, noted Vivek Mittal, Ph.D., head of the CSHL research team and corresponding author of the Science paper. Current efforts are focused on preventing metastatic spread, yet, paradoxically, insights have been lacking on how dormant metastatic lesions, after they have colonized distant organs, grow into large, lethal lesions.

Our study has focused on cells from primary tumors in mice that have spread and established micrometastases in secondary organs such as the lung, said Dingcheng Gao, Ph.D., a CSHL postdoctoral fellow and lead author of the Science paper. Weve dissected the heart of the angiogenic switch and demonstrated that micrometastases recruit EPCs from the bone marrow. These EPCs, in turn, regulate the angiogenic switch that activates blood-vessel growth and transforms these dormant lesions into life-threatening macrometastases.

Drs. Mittal, Gao and colleagues at CSHL showed in experimental mice that levels of a protein called Id-1 increase dramatically in EPCs when tumors are present. By using a technique called RNA interference, or RNAi, to block the expression of Id-1 in living animals, the team was able to prevent mobilization of EPCs to the site of metastasis, and thereby inhibit the angiogenic switch. This, in turn, interrupted the process in mice by which micrometastases are converted into lethal macrometastases. Notably, increased survival was noted in the tumor-bearing animals that were treated with this method. The next step is to perform a similar study in humans.

This study has raised the prospect of a novel therapeutic target, and suggests that selective targeting of EPCs, perhaps in combination with chemotherapy, may prove to be a clinically feasible approach in the treatment of people diagnosed with cancer that has metastasized to the lungs, Dr. Mittal said.

Past experiences have highlighted the challenges associated with therapies that target genetically mutant cancer cells. For instance, we know that cancer cells develop resistance to chemotherapeutic agents. We feel that approaches based on targeting the genetically stable components of the tumor microenvironment, such as the EPCs, need to be further explored for effective treatment of cancer.


'/>"/>

Contact: Jim Bono
bono@cshl.edu
516-367-8455
Cold Spring Harbor Laboratory
Source:Eurekalert

Related biology news :

1. Smithsonian scientists highlight environmental impacts of biofuels
2. Scientists find missing evolutionary link using tiny fungus crystal
3. Jefferson scientists studying the effects of high-dose vitamin C on non-Hodgkin lymphoma patients
4. Five young Hebrew University scientists win first competitive EU grants
5. Scientists find good news about methane bubbling up from the ocean floor
6. International scientists tackle obstacles to treating brain disorders
7. UC Irvine scientists find new way to sort stem cells
8. Top scientists meet for global conference on stem cell therapy for cardiovascular diseases
9. Physician-scientists seek solutions to reproductive problems related to chromosomal variations
10. CSHL scientists identify and repress breast cancer stem cells in mouse tissue
11. Scientists develop new measure of socioclimactic risk
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/15/2016)... DUBLIN , Dec 15, 2016 ... Research and Markets has announced ... to their offering. The report forecasts the global military ... 2016-2020. The report has been prepared based on an ... market landscape and its growth prospects over the coming years. The report ...
(Date:12/15/2016)... 14, 2016 "Increase in mobile transactions is ... mobile biometrics market is expected to grow from USD ... 2022, at a CAGR of 29.3% between 2016 and ... the growing demand for smart devices, government initiatives, and ... "Software component is expected to grow at a high ...
(Date:12/8/2016)... -- Singulex, Inc., the leader in Next Generation Immunodiagnostics powered ... and supply agreement with Thermo Fisher Scientific, the world ... to Thermo Scientific BRAHMS PCT (Procalcitonin), a biomarker which, ... diagnose systemic bacterial infection and sepsis and in ... assessing the risk of critically ill patients for progression ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... ... 18, 2017 , ... Whitehouse Labs has furthered its efforts ... Inc. (AMRI), the scientific staff dedicated to Extractables / Leachables & Impurities has ... in 2017. Extractable & Leachable evaluations have become increasingly more vital to successful ...
(Date:1/18/2017)... ... ... from a new study are stating that if levels of the blood test called ... there is still remaining prostate cancer cells that are more likely to come back, spreading ... an indicator of whether a man’s prostate cancer is growing or not,” stated Dr. ...
(Date:1/18/2017)... ... January 18, 2017 , ... uBiome, ... latest paper by its Science Editor, Dr. Elisabeth Bik, in the December 2016 ... Dr. Bik joined uBiome in October 2016 from her previous position at Stanford ...
(Date:1/18/2017)... DIEGO , Jan. 18, 2017  HUYA Bioscience ... of China,s pharmaceutical innovations, announced ... of Sciences Innovation and Investment Company (referred to as ... commercializing biomedical innovations discovered by leading scientists at CAS ... world. HUYA is the first company to ...
Breaking Biology Technology: