Navigation Links
CSHL researchers map changing epigenetic modifications that enable transposons to run amok
Date:12/10/2008

Cold Spring Harbor, N.Y. Much like cancer cells, plant cells grown for a long time outside of their normal milieu, in culture dishes, have highly unstable genomes. Changes in gene activity, or how genes are "expressed," help cells cope with challenging culture conditions but inadvertently also leave genes prone to mis-regulation by transposons -- bits of DNA that can jump around in the genome, inserting themselves into random genetic locations, often disrupting normal gene function and regulation.

Such genomic chaos, found in cancer and other diseases, is normally prevented by a host of mechanisms that scientists call epigenetic: they modify the expression of genes, although not by causing mutations in the sequence of the genome's DNA "letters."

How transposons (sometimes called mobile genetic elements) escape these controls is one of the questions driving the research of Professor Robert Martienssen -- a pioneer of plant epigenetics -- at Cold Spring Harbor Laboratory (CSHL). By undertaking the ambitious task of mapping the changing epigenetic landscape of continuously dividing plant cells, Martienssen's team has succeeded in capturing in detail epigenetic alterations and the molecular players that allow transposons to run amok. Their findings are described in a paper published in the December 9th issue of PLoS Biology.

Shifting RNA patterns

The numerous and diverse transposons present within the plant genome are normally rendered inactive by a series of complicated steps masterminded by small molecules of RNA, called small interfering RNA (siRNA). They perform this feat in a phenomenon known as RNA interference (RNAi). The discovery that modifications of heterochromatin -- densely packed, genetically "inactive" regions of DNA -- are targeted by RNAi was made by Martienssen's team in yeast cells and heralded as one of the leading scientific breakthroughs of 2002.

Martienssen's team now has found that in immortalized cells -- cells that are coaxed to grow endlessly in culture dishes -- the epigenetic changes resulting in a loss of heterochromatin and transposon "re-activation" are not due to a loss of the proteins that regulate heterochromatin. Instead, they find that the epigenetic modifications are due to a change in the population of siRNAs produced in the continuously dividing cells. When this occurs in the vicinity of genes, this epigenetic control can have important consequences for the organism. According to Martienssen, "our work implicates RNAi in epigenetic chromatin changes that occur in immortalized cells."

Epigenetic "restructuring" by siRNA

The CSHL researchers find that transposons that have lost heterochromatic marks are no longer associated with siRNA that are 24 nucleotides, or RNA "letters," in length. Rather, these re-activated transposons become associated with siRNAs that are 21nucleotides in length. In contrast, the transposons that retain their original heterochromatic marks and therefore remain silent continue to stay associated with 24-nucleotide siRNAs.

The team's eventual goal is to understand the mechanism responsible for the creation of epialleles epigenetic variations in gene expression patterns that stem from the creation of particular chromatin states. These predispose particular genes to become active when they shouldn't be and shut off the activity of genes that are essential. The team's epigenetic profiling study now implicates siRNA-driven heterochromatin restructuring as a mechanism that might lead to epiallele formation.


'/>"/>

Contact: Hema Bashyam
bashyam@cshl.edu
516-367-6822
Cold Spring Harbor Laboratory
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/30/2016)... 2016  higi SH llc (higi) announced today ... national brands, industry thought-leaders and celebrity influencers looking ... for taking steps to live healthier, more active ... higi has built the largest self-screening health station ... people who have conducted over 185 million biometric ...
(Date:11/24/2016)... , Nov. 23, 2016 Cercacor today introduced ... and their trainers non-invasively measure hemoglobin, Oxygen ... Rate, and Respiration Rate in approximately 30 seconds. Smaller ... easy and immediate access to key data about their ... a training regimen. Hemoglobin carries oxygen ...
(Date:11/17/2016)... Global Market Watch: Primarily supported by ownership types; ... Academics) market is to witness a value of US$37.1 billion ... Compounded Annual Growth Rate (CAGR) of 10.75% is foreseen from ... 2014-2020. North America is not way ... Europe at 9.56% respectively. Report Focus: ...
Breaking Biology News(10 mins):
(Date:12/9/2016)... 2016 China Cord Blood Corporation (NYSE: ... leading provider of cord blood collection, laboratory testing, hematopoietic ... the results of its 2016 Annual General Meeting, which was ... China . At the Annual ... of KPMG Huazhen LLP as the independent auditors of the ...
(Date:12/8/2016)... ... December 08, 2016 , ... Lajollacooks4u, San Diego’s premier team building ... team building events, new program offerings and company expansion. , This is ... to include groups of over 30 people. Ever since, Lajollacooks4u has seen significant demand ...
(Date:12/8/2016)... , Dec. 8, 2016  Renova™ Therapeutics, ... congestive heart failure and type 2 diabetes, announced ... a novel adeno-associated virus (AAV) vector developed in ... M.D., Ph.D., at Stanford University. The company plans ... paracrine gene therapy product pipeline. ...
(Date:12/8/2016)... OXFORD, England , December 8, 2016 ... Company, has expanded its customisable SureSeq™ NGS panel range with ... - allowing fast and cost-effective study of variants in familial ... copy number variation (CNV) detection on a single small panel ... and hotspot content. This includes all exons for LDLR ...
Breaking Biology Technology: