Navigation Links
CSHL geneticists solve mystery of EEC Syndrome's variable severity in children
Date:6/14/2013

Cold Spring Harbor, NY By identifying a protein that acts as a genetic modifier, scientists at Cold Spring Harbor Laboratory (CSHL) have solved the mystery of why some infants are born with a grave syndrome consisting of cleft palate and major deformities of the skin and limbs, while other infants bearing the same predisposing genetic mutation bear little or no sign of the illness, called EEC.

EEC stands for "Ectodactyly, Ectodermal dysplasia, Clefting syndrome." It is rare in its full-blown form, although individual aspects of the associated pathology, such as cleft palate, are more common.

EEC has a known genetic culprit, a single-"letter" DNA mutation in a gene called p63. This error causes a mutation in the p63 protein that the gene encodes. EEC is autosomal dominant, meaning that only one parent needs to contribute the defective copy of the gene for a child to develop the illness. When one parent carries the mutant gene, each child has a 50% chance of having EEC.

"But the big question is why some children with the mutation have severe birth defects, while othersin some cases, siblings of those affectedwho bear the same p63 mutation, are mostly or entirely symptom-free," says Professor Alea Mills, Ph.D., the CSHL geneticist who led the team that has just solved this mystery.

A complex series of genetic experiments directed by Mills reveals that the presence or absence of one variant type of the p63 protein, called TAp63, determines whether or not a child with the p63 mutation will in fact develop EEC pathology. TAp63 normally protects from the birth defects, and if it is not present, pathology is certain to occur, the team's experiments showed.

Solving the mystery of variable pathology

In 1999, Mills made the first genetic "knock-out" model for p63, in mice, putting the p63 gene on the map. Mice completely lacking the p63 gene were born with birth defects similar to the severest symptoms that characterize EEC in humans. Now, with a grant from The March of Dimes Foundation, Mills' team is the first to make a "knock-in" mouse model of EEC in which they replaced the normal p63 gene with a version bearing the single-letter mutation that causes EEC in people.

"We've made the very first mouse model of human EEC syndrome," notes Emma Vernersson Lindahl, Ph.D., a postdoctoral researcher and lead author of a paper appearing today in the American Journal of Medical Genetics that announces the team's results. "These mice, like babies born with EEC, showed a range of birth defects, fully recapitulating the range of defects that one sees in the human syndrome," she says.

To solve the mystery of variable pathology, the CSHL team tested the idea that the p63 protein itself controlled or "modified" EEC's manifestation in different individuals. The scenario they tested and which proved successful was this: mice with the EEC-causing p63 mutation were crossed to mice engineered to lack TAp63, one of the two major classes of p63 proteins. Those with both genetic changes consistently had features of EEC.

Most genes generate instructions for manufacturing proteins; precisely how the gene is turned on or its message edited affects which versions of structurally distinct proteins are manufactured. All healthy people generate both major classes of p63 proteins. TAp63 proved to be the class of p63 protein that modifies EEC features. Mice lacking TAp63 did not have any pathology, which means that TAp63 loss alone is not responsible for the syndrome. But when mice lacking TAp63 also possess the EEC-causing p63 gene mutation, pathology always occurs.

This work suggests that levels of the TAp63 protein determines whether children that have inherited one copy of the EEC-causing mutation from one of their parents are born with birth defects. Mills speculates that when levels of TAp63 drop beneath a certain threshold, it is no longer protective, opening the way to pathology.

"The only way you can have the EEC mutation and be normal, or have slight symptoms of the illness such as a bit of webbing between two toes, is to have robust amounts of TAp63 protein in cells when and where it is needed, during development," says Mills.

She hopes that her team's discovery that TAp63 affects the presence of birth defects will encourage doctors treating children with EEC to compare those only mildly affected with siblings or other children who have a severe form of the disease. "It will be important to sequence DNA from these children and compare the results. What's different? If we find differences, we have nailed it. If we find that the sequences are exactly the same, then we might look at several factors regulating gene expression for evidence of how TAp63 is expressed differently in each group."


'/>"/>

Contact: Peter Tarr
tarr@cshl.edu
516-367-8455
Cold Spring Harbor Laboratory
Source:Eurekalert

Related biology news :

1. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
2. Study resolves debate on human cell shut-down process
3. Kidney stone mystery solved
4. Could cap and trade for water solve problems facing the United States largest rivers?
5. CSHL researchers solve structure of human protein critical for silencing genes
6. New release of Web-based resource resolves confusion over plant names
7. Animal reservoir mystery solved
8. Hyenas that think outside the box solve problems faster
9. New forensic institute at the University of Leicester will help police forces solve unusual crimes
10. George Washington University Computational Biology Director solves 200-year-old oceanic mystery
11. Mount Sinai researchers solve mystery surrounding the death of two sisters nearly 50 years ago
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... , April 11, 2017 Crossmatch®, ... secure authentication solutions, today announced that it has ... Advanced Research Projects Activity (IARPA) to develop next-generation ... program. "Innovation has been a driving ... Thor program will allow us to innovate and ...
(Date:4/11/2017)... , April 11, 2017 NXT-ID, Inc. ... technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate governance ... Gino ... we look forward to their guidance and benefiting from their ...
(Date:4/5/2017)... -- Today HYPR Corp. , leading innovator in ... the HYPR platform is officially FIDO® Certified . ... that empowers biometric authentication across Fortune 500 enterprises and ... 15 million users across the financial services industry, however ... suites and physical access represent a growing portion of ...
Breaking Biology News(10 mins):
(Date:8/14/2017)... ... August 14, 2017 , ... Every ... Key researchers in the antibody community have recently come together to address this ... in the laboratory. , The team at Thermo Fisher Scientific ...
(Date:8/11/2017)... ... August 11, 2017 , ... A staple in the community ... that will incorporate important key elements including a new digital marketing strategy and updated ... supported them, Bill Miller has partnered with the South Texas Blood & Tissue Center ...
(Date:8/10/2017)... ... 09, 2017 , ... Teachers from three Philadelphia middle schools ... through the 16th, the University City Science Center will kick off the second ... Philadelphia-based middle school educators an opportunity for professional development related to STEM education. ...
(Date:8/10/2017)... SAN DIEGO, California, USA (PRWEB) , ... August ... ... and photonics, has partnered with four international biomedical optics laboratories — the Wellman ... Massachusetts General Hospital, Medical Laser Center Lübeck and the Beckman Laser Institute at ...
Breaking Biology Technology: