Navigation Links
CRISPR system can promote antibiotic resistance
Date:7/14/2014

CRISPR, a system of genes that bacteria use to fend off viruses, is involved in promoting antibiotic resistance in Francisella novicida, a close relative of the bacterium that causes tularemia. The finding contrasts with previous observations in other bacteria that the CRISPR system hinders the spread of antibiotic resistance genes.

The results are scheduled for publication in PNAS Early Edition.

The CRISPR system has attracted considerable attention for its potential uses in genetic engineering and biotechnology, but its roles in bacterial gene regulation are still surprising scientists. It was discovered by dairy industry researchers seeking to prevent phages, viruses that infect bacteria, from ruining the cultures used to make cheese and yogurt.

Bacteria incorporate small bits of DNA from phages into their CRISPR region and use that information to fight off the phages by chewing up their DNA. Cas9, an essential part of the CRISPR system, is a DNA-chewing enzyme that has been customized for use in biotechnology.

F. novicida infects rodents and only rarely infects humans, but it is a model for studying the more dangerous F. tularensis, a potential biological weapon. The bacteria infect and replicate inside macrophages, a type of immune cell.

Researchers at the Division of Infectious Diseases of the Emory University School of Medicine and the Emory Vaccine Center were surprised to find that when the gene encoding Cas9 is mutated in F. novicida bacteria, they become more vulnerable to polymyxin B as well as standard antibiotic treatments such as streptomycin and kanamycin. They were able to trace the effects of the mutation back to a defect in "envelope integrity." Cas9 regulates production of a lipoprotein, which appears to alter membrane permeability.

"The mutant bacteria are more permeable to certain chemicals from the outside," says David Weiss, PhD, assistant professor of medicine (infectious diseases) at Emory University School of Medicine and Yerkes National Primate Research Center. "That increased permeability also seems to make them more likely to set off alarms when they are infecting mammalian cells."

Graduate student Timothy Sampson, working with Weiss, found that Cas9 mutant bacteria may be more likely to leak bits of their DNA, a trigger for immune cells to get excited. This is a large reason why Cas9 is necessary for F. novicida to evade the mammalian immune system, a finding published in a 2013 Nature paper.

The regulatory role for Cas9 does not appear to be restricted to F. novicida; Weiss's team found that a Cas9 mutant in Campylobacter jejuni, a bacterium that is a common cause of human gastroenteritis, also has increased permeability and impaired antibiotic resistance.

The findings add to recent discoveries where Cas9 has been found to be involved in virulence the ability to cause disease in a living animal or human -- in various pathogenic bacteria such as Campylobacter and Neisseria meningitides.


'/>"/>

Contact: Quinn Eastman
qeastma@emory.edu
404-727-7829
Emory Health Sciences
Source:Eurekalert

Related biology news :

1. Shortening guide RNA markedly improves specificity of CRISPR-Cas nucleases
2. Disease knowledge may advance faster with CRISPR gene probing tool
3. Electronic Access Control Systems Market is Expected to Reach USD 31.2 Billion Globally in 2019: Transparency Market Research
4. Mouse study: Natural birth may strengthen the immune system
5. Whales as ecosystem engineers
6. A single gene separates aggressive and non-aggressive lymphatic system cancer
7. Biology of infection: A bacterial ballistic system
8. Mountain ecosystems scientists to convene at University of Nevada, Reno
9. Gum disease bacteria selectively disarm immune system, Penn study finds
10. Engineers design systems to help children with special needs
11. EcoHealth 2014 connects researchers addressing impacts of global change on health and ecosystems
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/5/2016)... , Feb. 5, 2016 ... addition of the "Global Facial Recognition ... --> http://www.researchandmarkets.com/research/5kvw8m/global_facial ) has announced ... Recognition Market 2016-2020" report to their ... ( http://www.researchandmarkets.com/research/5kvw8m/global_facial ) has announced the addition ...
(Date:2/3/2016)... , Feb. 3, 2016 Vigilant Solutions announces ... Department in Missouri solved two ... reader (LPR) data from Vigilant Solutions. Brian ... in which the victim was walking out of a convenience store and witnessed ... next to his vehicle, striking his vehicle and leaving ...
(Date:2/2/2016)... 2, 2016 Checkpoint Inhibitors for Cancer ... Are you interested in the future of ... checkpoint inhibitors. Visiongain,s report gives those predictions to ... national level. Avoid falling behind in data ... and revenues those emerging cancer therapies can achieve. ...
Breaking Biology News(10 mins):
(Date:2/9/2016)... Philadelphia, PA (PRWEB) , ... February 09, 2016 , ... ... balance, the 2016 Wharton Health Care Business Conference will bring together over 500 top ... ahead for an industry in transformation. The conference, organized by MBA students of the ...
(Date:2/9/2016)... PA (PRWEB) , ... February 09, 2016 , ... Tunnell ... Europe. Based in Paris, he will focus on acquiring new accounts and work ... met. , “Fred brings to our European clients more than 15 ...
(Date:2/9/2016)... 2016 This market research report on the ... prospects of the market in terms of revenue (USD ... in the manufacture of microbiology culture media and related ... market snapshot providing the overall information of various market ... section also provides the overall information and data analysis ...
(Date:2/8/2016)... Feb. 8, 2016 /PRNewswire/ - BIOREM Inc. (TSXV: BRM) ("Biorem" ... ten finalists for clean technology companies in the TSX Venture ... 10 companies listed on the TSX Venture Exchange, in each ... clean technology & life sciences, diversified industries and ... given to return on investment, market cap growth, trading volume ...
Breaking Biology Technology: