Navigation Links
CO2 increase in the atmosphere augments tolerance of barley to salinity
Date:7/7/2008

This release is available in Spanish.

In future, climate change will bring an increase in salty surfaces on the Earth and in the concentration of CO2 in the atmosphere. However, this higher CO2 has some positive effects on the physiology of barley plants and increases its tolerance to salinity. This is the conclusion of the PhD thesis of Ms Usue Prez-Lpez, defended at the University of the Basque Country (UPV/EHU).

Barley is one of the most important crops in the world. In fact 56 million hectares are under barley crops, making it the fourth most grown cereal worldwide. It is widespread over all the Continents, given that it adapts very well in different habitats. As with other plants, the correct development of barley depends on a suitable balance between the availability of water, nutrients and CO2. Nevertheless, it is predicted that there will be an increase in salinity in the soil in future, causing various imbalances which will result in a reduction in the growth of barley.

According to a number of authors, an increase in the CO2 level in the atmosphere may mitigate this growth decrease of the plants caused by high concentration of salts. However, research to date differs as regards results, and it is not known if the increased levels of CO2 can mitigate the negative effects of salinity on barley. This question was addressed by UPV/EHU teacher, Usue Prez-Lpez, in her PhD, presented at the University's Faculty of Science and Technology: Physiological responses of barley to the interaction of salinity and increased CO2. Prospects with climate change. Ms Prez-Lpez, a graduate in Biological Sciences with an Extraordinary Degree Award, carried out her work under the direction of doctors Alberto Muoz-Rueda and Amaia Mena-Petite, from the Department of Plant Biology and Ecology. Dr. Prez-Lpez developed part of her research at the Department of Chemistry and Agricultural Biotechnology of the University of Pisa (Italy).

Greater rates of salinity and CO2

According to data supplied by the Food and Agriculture Organization of the United Nations (FAO), some 20% of irrigated arable surface area is subject to some level or other of salinisation, thus being hostile terrain for agriculture. Moreover, it is predicted that, in the near future, salinity will increase due to factors such as the expansion of irrigated zones, inefficient irrigation systems, the use of poor quality water and the increase in soil water loss due to greater evaporation as a consequence of high temperatures.

As a result of this increase in salinity the hydric state of barley plants will deteriorate and imbalances in their nutrition will occur due to excess sodium and chlorine (components of salt) and due to lack of potassium, calcium and nitrogen. In essence, the plant will produce less carbohydrates and proteins, which means a reduction in its growth.

The Intergovernmental Panel on Climate Change (IPCC) predicts that the CO2 concentration in the atmosphere at the end of the XXI century will double current levels. An increase contributed to by human activity through the combustion of fossil fuels and the destruction of forests. However, Dr. Prez-Lpez believes that barley could benefit from this increase, at least as regards mitigating the negative consequences of high salinity. Her research was based on the hypothesis that the greater the concentration of CO2, the higher the rate of photosynthesis, the hydric state of the plant is enhanced due to its lower transpiration (losing less water) and absorbs less toxic ions and is better protected against oxidation.

Dr. Prez-Lpez selected two varieties of barley (Hordeum vulgare cv Alpha and Hordeum vulgare cv Iranis) and studied their development, their nutritional and hydric states, their antioxidant system and carbon and nitrogen metabolisms, under high salinity and CO2 conditions, both separately and together.

Positive effects of CO2

One of the goals of Dr. Prez-Lpez's thesis was to see if the increased CO2 levels would enable less chlorine and sodium to be accumulated in the tissues of the barley plant. After undertaking a study of the various plant organs, she concluded that CO2 does not mitigate the accumulation of sodium in the tissues, despite the plant showing greater growth and less transpiration.

This lower transpiration, cause by the presence of high concentrations of CO2, does attenuate the loss of water through the plant leaves, due to the fact that the stomas are kept closed and the plant tissues are dehydrated to a lesser degree. Moreover, Dr. Prez-Lpez observed that plants growing under these conditions show greater root development, which augments the surface for water absorption. As a consequence, deducing from Ms Prez-Lpez's thesis, high levels of CO2 considerably enhances the hydric state of barley.

Dr. Prez-Lpez also asked herself if higher concentrations of CO2 in the atmosphere mitigate the reduction in growth caused by salinity. According to her PhD thesis, high concentrations of CO2 have a positive influence on the photosynthesis of the plant because, despite the fact that the plant keeps its stomas shut, the diffusion of CO2 between the exterior and the interior of the leaf is greater.

Finally, Dr. Prez-Lpez determined the oxidative stress level of the barley (the oxidation suffered by a plant due to high salinity), studied its antioxidant capacity, that is its defence mechanisms. Her conclusion was that high concentrations of CO2 alleviate this stress.

In short, Dr. Prez-Lpez's research concludes that the increase in CO2 enables greater growth of barley plants subject to saline conditions, thanks to the improvement in their hydric state and turgescence, but, above all, to the increase in photosynthesis.


'/>"/>

Contact: Alaitz Ochoa de Eribe
alaitzo@elhuyar.com
34-688-673-679
Elhuyar Fundazioa
Source:Eurekalert  

Related biology news :

1. Sleep restriction results in increased consumption of energy from snacks
2. RAND study finds increase in piracy and terrorism at sea
3. Organic corn: Increasing rotation complexity increases yields
4. Genetic mutation associated with increased risk of lung cancer
5. Disabling mouse enzyme increases fertility
6. UT researchers find link between advertising and increased tobacco use among Indias youth
7. Scientists discover how nanocluster contaminants increase risk of spreading
8. High cholesterol in your 40s increases risk of Alzheimers disease
9. Genetic variants of USF1 are associated with the increased risk for cardiovascular disease
10. Ibuprofen or acetaminophen in long-term resistance training increases muscle mass/strength
11. Gene variant increases breast cancer risk
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
CO2 increase in the atmosphere augments tolerance of barley to salinity
(Date:4/5/2017)... 5, 2017 Today HYPR Corp. , ... server component of the HYPR platform is officially ... end-to-end security architecture that empowers biometric authentication across Fortune ... already secured over 15 million users across the financial ... connected home product suites and physical access represent a ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/30/2017)... 30, 2017  On April 6-7, 2017, Sequencing.com will ... hackathon at Microsoft,s headquarters in ... focus on developing health and wellness apps that provide ... the Genome is the first hackathon for personal ... largest companies in the genomics, tech and health industries ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... , ... October 12, 2017 , ... ... two-dimensional representations of a complex biological network, a depiction of a system of ... mess,” said Dmitry Korkin, PhD, associate professor of computer science at Worcester Polytechnic ...
(Date:10/12/2017)... ... 12, 2017 , ... AMRI, a global contract research, development ... patient outcomes and quality of life, will now be offering its impurity solutions ... new regulatory requirements for all new drug products, including the finalization of ICH ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back for ... June 2018 in San Francisco, CA. The Summit brings together current and former FDA ... board directors and government officials from around the world to address key issues in ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new study ... in frozen and fresh in vitro fertilization (IVF) transfer cycles. The ... IVF success. , After comparing the results from the fresh and frozen transfer ...
Breaking Biology Technology: