Navigation Links
CNIO researchers identify a new gene that is essential for nuclear reprogramming
Date:6/5/2013

Researchers are still fascinated by the idea of the possibility of reprogramming the cells of any tissue, turning them into cells with the capacity to differentiate into cells of a completely different type pluripotent cellsand they are still striving to understand how it happens.

A group from the Spanish National Cancer Research Centre (CNIO), headed by researcher Ralph P. Schneider, from the Telomeres and Telomerase Group led by María A. Blasco, publishes this week an article in Nature Communications on the discovery of a new gene called TRF1 that is essential for nuclear reprogramming.

It is also known that TRF1 is indispensable for protecting telomeres, the ends of chromosomes. Existing evidence suggests that the length of telomeres and pluripotencythe capacity of a cell to differentiate into multiple cell typesare related. Pluripotent cells, for example, have very long telomeresa previous finding at CNIObut until now no protective protein for the telomeres had been found that was essential for pluripotency.

To investigate the connection between telomeres and pluripotency, researchers generated a 'reporter' mouse: they linked together the TRF1 gene and the gene coding for a green fluorescent protein and created a lineage of mice carrying this new genetic baggage. In these animals, the green fluorescent protein acts as a label to show expression of TRF1.

They discovered that TRF1 is an excellent marker for stem cells, both in adult stem cellsthose that are found in tissues and the different organs of the bodyand embryonic stem cells. It is also the case with 'induced pluripotent' stem cells (iPS cells), which are pluripotent cells that come from artificially reprogrammed specialised cells.

In the case of tissues, the authors write: "TRF1 distinguishes adult stem cells and is indispensable for their functioning". The discovery is useful for both identifying and eventually isolating the stem cell population in tissues, something that is important for the development of regenerative medicine. The cells in which TRF1 is expressed are also the most pluripotent.

In iPS cells, the same thing happens. The authors explain that: "The expression of TRF1 is an indicator of pluripotency. Those iPS cells that express the highest levels of TRF1 are also the most pluripotent. Furthermore, we demonstrate that TRF1 is necessary for the induction and maintenance of pluripotency, inhibiting the triggering of DNA damage responses and apoptosis ('cell suicide')".


'/>"/>

Contact: Press Office
comunicacion@cnio.es
Centro Nacional de Investigaciones Oncologicas (CNIO)
Source:Eurekalert

Related biology news :

1. Researchers develop a faster method to identify Salmonella strains
2. Researchers document acceleration of ocean denitrification during deglaciation
3. Researchers design sensitive new microphone modeled on fly ear
4. Researchers help threatened wheat crops in Asia, Africa
5. U of A medical researchers ID genetic marker for sporadic breast cancer
6. UCI researchers find sea anemone venom-derived compound effective in anti-obesity studies
7. MU researchers develop radioactive nanoparticles that target cancer cells
8. Genetic predictors of postpartum depression uncovered by Hopkins researchers
9. U of M researchers develop model for better testing, targeting of MPNST
10. Widespread but neglected disease a health threat in Africa, Virginia Tech researchers say
11. Penn Medicine researchers identify 4 new genetic risk factors for testicular cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/31/2016)... 31, 2016  Genomics firm Nabsys has completed a ... Barrett Bready , M.D., who returned to the company ... technical leadership team, including Chief Technology Officer, John ... Steve Nurnberg and Vice President of Software and Informatics, ... Dr. Bready served as CEO of Nabsys ...
(Date:3/23/2016)... 23, 2016 ... Gesichts- und Stimmerkennung mit Passwörtern     ... MESG ), ein führender Anbieter digitaler ... mit SpeechPro zusammenarbeitet, um erstmals dessen Biometrietechnologie ... die Möglichkeit angeboten, im Rahmen mobiler Apps ...
(Date:3/22/2016)... PROVO and SANDY, Utah ... (NSO), which operates the highest sample volume laboratory in ... Tute Genomics and UNIConnect, leaders in clinical sequencing informatics ... the launch of a project to establish the informatics ... NSO has been contracted by the ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly ... technologies, services and solutions to the healthcare market. The company's primary focus is ... manufacturing, sales and marketing strategies that are necessary to help companies efficiently bring ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)... -- The Prostate Cancer Foundation (PCF) is pleased to announce 24 new ... prostate cancer. Members of the Class of 2016 were selected from a pool ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: