Navigation Links
CNIO researchers identify a new gene that is essential for nuclear reprogramming

Researchers are still fascinated by the idea of the possibility of reprogramming the cells of any tissue, turning them into cells with the capacity to differentiate into cells of a completely different type pluripotent cellsand they are still striving to understand how it happens.

A group from the Spanish National Cancer Research Centre (CNIO), headed by researcher Ralph P. Schneider, from the Telomeres and Telomerase Group led by María A. Blasco, publishes this week an article in Nature Communications on the discovery of a new gene called TRF1 that is essential for nuclear reprogramming.

It is also known that TRF1 is indispensable for protecting telomeres, the ends of chromosomes. Existing evidence suggests that the length of telomeres and pluripotencythe capacity of a cell to differentiate into multiple cell typesare related. Pluripotent cells, for example, have very long telomeresa previous finding at CNIObut until now no protective protein for the telomeres had been found that was essential for pluripotency.

To investigate the connection between telomeres and pluripotency, researchers generated a 'reporter' mouse: they linked together the TRF1 gene and the gene coding for a green fluorescent protein and created a lineage of mice carrying this new genetic baggage. In these animals, the green fluorescent protein acts as a label to show expression of TRF1.

They discovered that TRF1 is an excellent marker for stem cells, both in adult stem cellsthose that are found in tissues and the different organs of the bodyand embryonic stem cells. It is also the case with 'induced pluripotent' stem cells (iPS cells), which are pluripotent cells that come from artificially reprogrammed specialised cells.

In the case of tissues, the authors write: "TRF1 distinguishes adult stem cells and is indispensable for their functioning". The discovery is useful for both identifying and eventually isolating the stem cell population in tissues, something that is important for the development of regenerative medicine. The cells in which TRF1 is expressed are also the most pluripotent.

In iPS cells, the same thing happens. The authors explain that: "The expression of TRF1 is an indicator of pluripotency. Those iPS cells that express the highest levels of TRF1 are also the most pluripotent. Furthermore, we demonstrate that TRF1 is necessary for the induction and maintenance of pluripotency, inhibiting the triggering of DNA damage responses and apoptosis ('cell suicide')".


Contact: Press Office
Centro Nacional de Investigaciones Oncologicas (CNIO)

Related biology news :

1. Researchers develop a faster method to identify Salmonella strains
2. Researchers document acceleration of ocean denitrification during deglaciation
3. Researchers design sensitive new microphone modeled on fly ear
4. Researchers help threatened wheat crops in Asia, Africa
5. U of A medical researchers ID genetic marker for sporadic breast cancer
6. UCI researchers find sea anemone venom-derived compound effective in anti-obesity studies
7. MU researchers develop radioactive nanoparticles that target cancer cells
8. Genetic predictors of postpartum depression uncovered by Hopkins researchers
9. U of M researchers develop model for better testing, targeting of MPNST
10. Widespread but neglected disease a health threat in Africa, Virginia Tech researchers say
11. Penn Medicine researchers identify 4 new genetic risk factors for testicular cancer
Post Your Comments:
(Date:5/24/2016)... care by providing unparalleled technology to leaders of the medical imaging industry.  As such, ... to the range of products distributed by Ampronix. Photo - ... ... ... With ...
(Date:5/12/2016)... 12, 2016 , a brand ... overview results from the Q1 wave of its quarterly ... was consumers, receptivity to a program where they would ... health insurance company. "We were surprised to ... Michael LaColla , CEO of Troubadour Research, "primarily ...
(Date:4/28/2016)... and BANGALORE, India , April 28, 2016 ... a product subsidiary of Infosys (NYSE: INFY ), ... a global partnership that will provide end customers ... mobile banking and payment services.      (Logo: ... innovation area for financial services, but it also plays a ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016  Global demand for ... percent through 2020 to $7.2 billion.  This market ... beverages, cleaning products, biofuel production, animal feed, and ... diagnostics, and biocatalysts). Food and beverages will remain ... by increasing consumption of products containing enzymes in ...
(Date:6/27/2016)... ... June 27, 2016 , ... Cancer experts from Austria, Hungary, ... be a new and helpful biomarker for malignant pleural mesothelioma. Surviving Mesothelioma has ... it now. , Biomarkers are components in the blood, tissue or body ...
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf K. ... the faculty of the University of North Carolina Kenan-Flagler Business School ... entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, leading ...
(Date:6/24/2016)... on a range of subjects including policies, debt and investment ... Speaking at a lecture to the Canadian Economics ... the country,s inflation target, which is set by both the ... "In certain areas there needs to be frequent ... not sit down and address strategy together?" He ...
Breaking Biology Technology: