Navigation Links
CNIO researchers 'capture' the replication of the human genome for the first time
Date:4/25/2013

The Genomic Instability Group led by researcher scar Fernndez-Capetillo at the Spanish National Cancer Research Centre (CNIO), has for the first time obtained a panoramic photo of the proteins that take part in human DNA division, a process known as replication.

The research article, published today in the journal Cell Reports, is the result of a collaborative study in which other CNIO groups have also participated, including the Proteomics Unit led by Javier Muoz and the DNA Replication Group led by Juan Mndez.

DNA replication is the chemical process that sustains cell division, and thus one of the biological mechanisms targeted by most chemotherapeutic agents in order to destroy tumour cells.

To date, multiple independent molecular studies carried out over the last decades have given a general idea of the proteins involved in the replication process. "We suspected that there might be several dozen proteins that control this process meticulously, thus ensuring the correct duplication of our genome as an indispensible step prior to cell division," explains Fernndez-Capetillo.

Thanks to the development of a new technology that allows to isolate recently synthesised DNA, in addition to sophisticated proteomic detection tools (the iPOND-MS technique), CNIO researchers have for the first time been able to precisely draw out, in a single experiment, the replication machinery. These results represent the first proteomic characterisation of the replisome.

According to the authors, the proteins identified have very different activities: they open up the DNA double helix, copy it, repair any breaks if needs be, modify it in different ways, etc. "In short, they're all necessary in order to ensure the correct duplication of the DNA and avoid aberrations in the genetic material that form the basis of tumours", states Fernndez-Capetillo.

NEW REPLICATION PROTEINS

Andrs Joaqun Lpez-Contreras, the first author of the study, adds: "Some of these proteins were already known but this study has also allowed us to identify new proteins needed for DNA replication, opening up new research paths in the field."

DNA replication in cancer cells occurs in an uncontrolled or aberrant manner, which makes it the Achilles' heel of oncology research. According to Fernndez-Capetillo, the next step consists of applying these new technologies to finding differences in the replication machinery of normal and cancer cells, so that new therapeutic strategies can be found to treat cancer.

"If we manage to find fundamental differences between replication in normal cells and in cancer cells, we will surely be able to find new therapeutic targets on which to focus future treatments in the fight against cancer," says the CNIO researcher.


'/>"/>

Contact: Nuria Noriega
comunicacion@cnio.es
Centro Nacional de Investigaciones Oncologicas (CNIO)
Source:Eurekalert

Related biology news :

1. Researchers abuzz over caffeine as cancer-cell killer
2. An important discovery in breast cancer by IRCM researchers
3. UCLA researchers find nanodiamonds could improve effectiveness of breast cancer treatment
4. Clues to heart disease in unexpected places, Temple researchers discover
5. BUSM researchers identify novel approach to study COPD and treatment efficacy
6. Researchers call for marine observation network
7. Biofilms help Salmonella survive hostile conditions, Virginia Tech researchers say
8. U-M researchers find new way to clear cholesterol from the blood
9. Dartmouth researchers find there is no single sexy chin
10. Researchers design drug to restore cell suicide in HPV-related head and neck cancer
11. Researchers shine light on how stress circuits learn
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... No two people are believed to ... York University Tandon School of Engineering and Michigan ... partial similarities between prints are common enough that ... and other electronic devices can be more vulnerable ... in the fact that fingerprint-based authentication systems feature ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
(Date:4/4/2017)... 2017   EyeLock LLC , a leader of ... States Patent and Trademark Office (USPTO) has issued U.S. ... of an iris image with a face image acquired ... company,s 45 th issued patent. ... given the multi-modal biometric capabilities that have recently come ...
Breaking Biology News(10 mins):
(Date:6/22/2017)... (PRWEB) , ... June 22, 2017 , ... ... superior results to clients throughout the biopharma and life sciences industries, continue to ... industry is seeing. Tunnell’s Kip Wolf will be speaking on “The State of ...
(Date:6/20/2017)... ... June 20, 2017 , ... ... CTNext board of directors has formed a Higher Education Entrepreneurship Advisory Committee to ... of institution presidents and other high-ranking representatives from 35 higher education institutions across ...
(Date:6/20/2017)... ... 2017 , ... National executive search firm, Slone Partners, announces ... and biomarker expertise, as VP of Scientific Affairs at Cambridge Biomedical. , ... development and sample testing services. The organization acts as a leading provider of ...
(Date:6/19/2017)... ... June 19, 2017 , ... EDETEK, Inc., ... today that it is launching two new additions of its award-winning cloud-based platform ... capabilities at the DIA 2017 Annual Meeting in Chicago, IL, June 19-22, 2017. ...
Breaking Biology Technology: