Navigation Links
Bypass commands from the brain to legs through a computer
Date:8/14/2014

Gait disturbance in individuals with spinal cord injury is attributed to the interruption of neural pathways from brain to the spinal locomotor center, whereas neural circuits locate below and above the lesion maintain most of their functions. An artificial connection that bridges the lost pathway and connects brain to spinal circuits has potential to ameliorate the functional loss. A Japanese research group led by Shusaku Sasada, research fellow and Yukio Nishimura, associate professor of the National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS) has successfully made an artificial connection from the brain to the locomotion center in the spinal cord by bypassing with a computer interface. This allowed subjects to stimulate the spinal locomotion center using volitionally-controlled muscle activity and to control walking in legs. This result was published online in The Journal of Neuroscience on August 13, 2014.

Neural networks in the spinal cord, locomotion center are capable of producing rhythmic movements, such as swimming and walking, even when isolated from the brain. The brain controls spinal locomotion center by sending command to the spinal locomotion center to start, stop and change waking speed. In most cases of spinal cord injury, the loss of this link from the brain to the locomotion center causes problems with walking.

The research group came up with bypassing the functioning brain and locomotion center with the computer to compensate lost pathways as a way to enable individuals with spinal cord injury to regain walking ability.

Since the arm movement associte with leg movement when we walk they used muscle activity of arm to sarogate the brain activity. The computer interface allowed subjects to control magnetic stimulator that drive to the spinal locomotion center non-invassively using volitionally-controlled muscle activity and to control walking in legs. As a results of experiments in people who are neurologically intact, the subjects were asked to make own legs relaxed and passively controlled via computer interface that was controlled by arm muscle, walking behavior in legs was induced and subjects could control the step cycle volitionally as well. However without bypassing with the computer interface, the legs did not move even if the arms muscle was volitionally acivated.

"We hope that this technology would compensate for the interrupted pathways' function by sending an intentionally encoded command to the preserved spinal locomotor center and regain volitionally-controlled walking in indviduals with paraplegia. However, the major challenge that this technology does not help them to dodge obstacles and to maintain posture. We are carefully working toward clinical application in near future", Nishimura said.


'/>"/>
Contact: Yukio Nishimura
yukio@nips.ac.jp
National Institutes of Natural Sciences
Source:Eurekalert  

Related biology news :

1. Pitt develops biodegradable artery graft to enhance bypass surgeries
2. Gastric bypass surgery alters gut microbiota profile along the intestine
3. Brain training may lessen cognitive impairments associated with coronary bypass surgery
4. Gastric bypass surgery: Follow up as directed to lose more
5. For fish and rice to thrive in Yolo Bypass, just add water
6. Gut hormone test predicts individual efficacy of gastric bypass
7. Gastric bypass surgery improves diabetic patients quality of life
8. Commands from the matrix
9. REST is crucial for the timing of brain development
10. Holding a mirror to brain changes in autism
11. Strong scientific evidence that eating berries benefits the brain
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Bypass commands from the brain to legs through a computer
(Date:3/16/2017)... CeBIT 2017 - Against identity fraud with DERMALOG solutions "Made in Germany ... ... in one project, multi-biometric solutions provide a crucial contribution against identity fraud. (PRNewsFoto/Dermalog Identification Systems) ... Used combined in one project, multi-biometric solutions provide a crucial ... ...
(Date:3/7/2017)... England , March 7, 2017 Brandwatch , ... chosen by The Prince,s Trust to uncover insights to ... across The Trust. The UK,s leading youth charity will ... social campaign results and get a better understanding of the topics ... ...
(Date:3/2/2017)... LONDON , March 2, 2017 Summary ... require to better understand Merck KGaA and its partnering ... report: https://www.reportbuyer.com/product/3605601/ Description The Partnering Deals ... into the partnering activity of one of the world,s ... reports are prepared upon purchase to ensure inclusion of ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... In today,s pre-market research, Stock-Callers.com ... Biotech industry: Sangamo Therapeutics Inc. (NASDAQ: SGMO), Eyegate Pharmaceuticals ... and Regulus Therapeutics Inc. (NASDAQ: RGLS ). ... its rating on Pharmaceuticals/Biotechnology to "Overweight" from "Market Weight." Learn more ... ...
(Date:3/22/2017)... Denmark , March 22, 2017  Ascendis ... utilizes its innovative TransCon technology to address significant ... financial results for the full year ended December ... significant year for our company as we broadened ... a leading, integrated rare disease company with an ...
(Date:3/22/2017)... 2017   iSpecimen ®, the marketplace ... Pathology Service (DPS), a full-service anatomic pathology reference ... United States , has joined a program offered ... (DHIN) to make human biospecimens and associated data ... program, announced in 2015 as a collaboration between iSpecimen ...
(Date:3/22/2017)... 22, 2017   Boston Biomedical , an industry ... to target cancer stemness pathways, today announced its Board ... as Chief Executive Officer, effective April 24, 2017. ... Li , M.D., FACP, who has led Boston Biomedical ... his leadership, Boston Biomedical has grown from a "garage ...
Breaking Biology Technology: