Navigation Links
Bug-Zapper: A dose of radiation may help knock out malaria
Date:11/8/2007

How are physicists helping an effort to eradicate malaria, the mosquito-borne disease that kills more than one million people every year" Researchers at the National Institute of Standards and Technology (NIST) used their expertise in radiation science to help a young company create weakened, harmless versions of the malaria-causing parasite. These parasites, in turn, are being used to create a new type of vaccine that shows promise of being more effective than current malaria vaccines.

The new vaccine is a departure from previous approaches, which have usually depended on proteins derived from only part of the parasite Plasmodium falciparum, the most dangerous species of parasite that causes malaria. Using vaccines based on whole living parasites had been on scientists minds for several decades, after they discovered that volunteers built up high levels of protection to malaria after being exposed to mosquitoes containing live, radiation-weakened parasites. But manufacturing technology only recently has been developed to the point where it is possible to efficiently extract weakened parasites from their mosquito carriers in order to make a vaccine.

With their knowledge of measuring radiation doses for industrial processes such as medical equipment sterilization, NIST researchers have been lending their expertise for several years to Maryland-based biotech firm Sanaria Inc., which is creating the new vaccine. In the manufacturing process, live mosquitoes containing the parasite are exposed to gamma rays. To ensure that the parasites are sufficiently weakened for the vaccine, yet remain alive, they must be exposed to a radiation dose of at least 150 gray, but not much more. Coincidentally, this is also the dose used to delay sprouting in potatoes and onions.

One critical design issue is ensuring a relatively uniform radiation dose regardless of where the mosquito is in the chamber. Using radiation-sensitive test materials inside the chamber as well as sophisticated measuring equipment, NIST researchers mapped out the radiation dose at different parts of the chamber. They initially found there was a variation in dose within the chamber, but by suggesting that the manufacturer change the position of the chamber relative to the radiation source they were able to significantly reduce this variation in dose. This not only increases the speed of the process, but more importantly improves the quality of the process. To be safe for human trials all mosquitoes in the chamber must get their minimum dose of 150 gray.

The vaccine is currently being manufactured for the anticipated human clinical trials. NIST researchers will continue to be active in the manufacturing process by doing regularly scheduled quality-assurance tests that ensure the desired dose is being delivered to the mosquitoes.


'/>"/>

Contact: Ben Stein
bstein@nist.gov
301-975-3097
National Institute of Standards and Technology (NIST)
Source:Eurekalert

Related biology news :

1. A new radiation therapy treatment developed for head and neck cancer patients
2. Intravenous gene therapy protects normal tissue of mice during whole-body radiation
3. Antioxidants could provide all-purpose radiation protection
4. Knocking out cell receptor may help block fat deposits in tissues, prevent weight gain
5. Binghamton University researchers investigate evolving malaria resistance
6. Advance in effort to fight malaria by tricking the mosquitos sense of smell
7. Progress Against Malaria: Developments on the Horizon
8. MSU researcher helps develop computer game for Ugandan children recovering from cerebral malaria
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... , April 17, 2017 NXT-ID, Inc. ... company, announces the filing of its 2016 Annual Report on Form ... Exchange Commission. ... Form 10-K is available in the Investor Relations section of the ... on the SEC,s website at http://www.sec.gov . 2016 ...
(Date:4/11/2017)... -- Research and Markets has announced the addition of ... offering. ... market to grow at a CAGR of 30.37% during the period ... has been prepared based on an in-depth market analysis with inputs ... growth prospects over the coming years. The report also includes a ...
(Date:4/5/2017)... -- The Allen Institute for Cell Science today announces the ... and dynamic digital window into the human cell. The ... of deep learning to create predictive models of cell ... growing suite of powerful tools. The Allen Cell Explorer ... available resources created and shared by the Allen Institute ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... NJ (PRWEB) , ... October 11, 2017 , ... Personal eye wash is a basic ... one eye at a time. So which eye do you rinse first if a dangerous ... have Plum Duo Eye Wash with its unique dual eye piece. , “Whether ...
(Date:10/11/2017)...  VMS BioMarketing, a leading provider of patient support solutions, ... Educator (CNE) network, which will launch this week. The VMS ... care professionals to enhance the patient care experience by delivering ... health care professionals to help women who have been diagnosed ... ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new study published in ... and fresh in vitro fertilization (IVF) transfer cycles. The multi-center matched ... , After comparing the results from the fresh and frozen transfer cohorts, the ...
(Date:10/10/2017)... (PRWEB) , ... October 10, ... ... development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed ... targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with ...
Breaking Biology Technology: