Navigation Links
Bubbling down: Discovery suggests surprising uses for common bubbles
Date:8/19/2014

Anyone who has ever had a glass of fizzy soda knows that bubbles can throw tiny particles into the air. But in a finding with wide industrial applications, Princeton researchers have demonstrated that the bursting bubbles push some particles down into the liquid as well.

"It is well known that bursting bubbles produce aerosol droplets, so we were surprised, and fascinated, to discover that when we covered the water with oil, the same process injected tiny oil droplets into the water," said Howard Stone, the Donald R. Dixon '69 and Elizabeth W. Dixon Professor of Mechanical and Aerospace Engineering at Princeton and the lead researcher for the project.

The conclusions provide new insight into the mixture of non-soluble liquids a process at the center of many fields from drug manufacturing to oil spill cleanups.

In an article published on July 13 in the scholarly journal Nature Physics, the researchers describe how they reached their conclusions after examining bubbles in containers holding water covered by a layer of oil. Using several experimental approaches, they presented a detailed physical description of how the bubbles burst and how that affected the oil and water mix.

"If you look at this system, which has a thin layer of oil over water, the bursting bubbles were dispersing the oil phase in the form of nano-droplets into the water," said Jie Feng, a graduate student in Stone's lab and the lead author of the paper. "Essentially, it is an unrealized form of mass transport related to bubble bursting."

In one observation, the researchers noted that the water in one container changed from clear to translucent after bubbles ran through the mixture for some time. The change in appearance "suggested that small objects had been dispersed in the lower water phase," the researchers wrote.

To get a better understanding of how this was happening, they used a high-speed camera to break down the steps involved in a bubble's final pop. They found that a bubble's collapse caused a pressure wave just below the bubble; this wave pushed a small amount of liquid out and down, away from the collapsing void.

The researchers also found that the addition of a surfactant, which decreases surface tension, was critical to the formation of the nano-droplets. In fact, they concluded that without a proper amount of surfactant, the droplets would not form.

The nano-droplets are so small they are impossible to see with the naked eye, so the researchers performed further experiments to test their analysis. In one, they spread an extremely thin layer of latex particles over the water and were able to observe the particles moving into the water. They also added a layer of material that is sensitive to ultraviolet light and then used the light to solidify the droplets for observation in the water mixture.

Bubbles' ability to mix liquids offers insights into a number of important systems. During oil spills, for example, it is important to understand how the oil moves from the surface of the water into deeper layers. This has generally been attributed to wave action, but the researchers' findings indicate that even in a flat calm the oil can gradually filter down into the water because of tiny bubbles.

"Bubbles are used to make foams and are part of common gas-liquid processes used in chemical processing," Stone said. "But bubbles also occur in lakes, rivers and oceans because of wave breaking and rain. As a consequence, bubbles can impact many systems."

The researchers said that bubbling also might play a role in a critical system in which organic matter circulates through the ocean. A thin film of material, called the sea surface microlayer, rests at the very top of ocean water. The microlayer contains lipids, proteins and hydrocarbon pollutants.

"Our work suggests that the sea surface microlayer may not only be transported into the atmosphere within aerosol droplets produced by bursting bubbles, but it might also be dispersed into the bulk of the oceans, thus redistributing organic matter into the ecosystem," they wrote.

Feng also said that applying this approach could play an important role in many industrial mixing systems. For one, this manner of bubbling to produce nanoemulsions uses much less energy than traditional mixers, so it is cheaper and more efficient. It also does not require extremely low surface tensions, which some types of industrial processes require. And it provides a good method to mix typically insoluble liquids, such as oil and water.

"This system offers an energy-efficient route to produce nanoparticles, with the potential to increase in scale, for applications in a variety of fields such as drug delivery, food production and materials science," he said.


'/>"/>

Contact: John Sullivan
js29@princeton.edu
609-258-4597
Princeton University, Engineering School
Source:Eurekalert  

Related biology news :

1. New discovery: Microbes create dripstones
2. Hijacking the brains blood supply: tumor discovery could aid treatment
3. Discovery of new form of dystrophin protein could lead to therapy for some DMD patients
4. Albert Einstein College of Medicine receives grant from the Michael J. Fox Foundation to fund drug discovery project targeting Parkinsons
5. Discovery may make it easier to develop life-saving stem cells
6. Gene discovery could lead to better soybean varieties for Northern United States
7. Discovery provides insights on how plants respond to elevated CO2 levels
8. New discovery in living cell signaling
9. Discovery of Earths northernmost perennial spring
10. Discovery of a bud-break gene could lead to trees adapted for a changing climate
11. The transmission of information via proteins could revolutionize drug discovery
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Bubbling down: Discovery suggests surprising uses for common bubbles
(Date:6/5/2020)... HOUSTON (PRWEB) , ... June 04, 2020 , ... Greffex, ... Bush to its Board of Directors. , “Neil understands the need for a global ... also President and CEO of Greffex. Mr. Bush will serve as an independent, director ...
(Date:5/28/2020)... , ... May 28, 2020 ... ... has announced a new enzyme solution for adjunct liquefaction: AMYLEX® 6T. The ... the ability to expand into new segments with locally-sourced raw materials, improve ...
(Date:5/21/2020)... N.C. (PRWEB) , ... May ... ... , the leading software-as-a-service (SaaS) provider of operations management solutions, today introduced ... BioMed module provides a cloud-based platform for connecting the people and systems ...
Breaking Biology News(10 mins):
(Date:5/30/2020)... ... May 29, 2020 , ... Medrio, Inc., the leading ... markets, has enabled Cytovale, Inc., a medical technology company dedicated to revolutionizing diagnostics ... their first patient in (FPI) in just seven days. The Cytovale technology will ...
(Date:5/26/2020)... ... May 26, 2020 , ... Brilliant , the leading smart ... smart garage door openers, announce a new integration to bring more convenience, simplicity, and ... openers powered by Aladdin Connect® can now be controlled from Brilliant’s in-wall touchscreen control ...
(Date:5/21/2020)... , ... May 20, 2020 , ... ... of Simon Prakash, who will serve as the company’s executive vice president of ... time when Exo is disrupting the medical imaging space, bringing more than 24 ...
(Date:5/15/2020)... ... May 15, 2020 , ... Sentien Biotechnologies, Inc., a clinical-stage biotechnology company developing ... Chairman. Mr. Ganz will continue to lead Sentien’s Board of Directors, a role ... CEO Brian Miller and Sentien’s management team. , Mr. Ganz has more ...
Breaking Biology Technology: