Navigation Links
Brown scientists take the petri dish to new dimensions
Date:9/19/2007

PROVIDENCE, R.I. [Brown University] A team of Brown University biomedical engineers has invented a 3-D Petri dish that can grow cells in three dimensions, a method that promises to quickly and cheaply produce more realistic cells for drug development and tissue transplantation.

The technique employs a new dish cleverly crafted from a sugary substance long used in science laboratories that allows cells to self-assemble naturally and form microtissues. A description of how the 3-D dish works appears in the journal Tissue Engineering.

Its a new technology with a lot of promise to improve biomedical research, said Jeffrey Morgan, a Brown professor of medical science and engineering.

Morgan conceived and created the 3-D Petri dish with a team of Brown students led by Anthony Napolitano, a Ph.D. candidate in the biomedical engineering program. Napolitano spent two years perfecting the new dish and recently won a $15,000 award from the National Collegiate Inventors and Innovators Alliance to develop the patent-pending technology into a commercially viable product.

This technology is an inexpensive and easy-to-use alternative to current 3-D cell culture methods, Napolitano said. Its the next generation.

The technology tackles a topic of increasing interest to scientists: creating hothouse cells that look and behave more like cells grown in the human body. Since 1877, scientists have relied on the Petri dish to grow, or culture, cells. The cells stick to the bottom of the dishes and spread out as they multiply. In the body, however, cells dont grow that way. They are surrounded by other cells in three dimensions, forming tissues such as skin, muscle, and bone. This is what happens in Morgans 3-D dish.

The clear, rubbery dish is the size of a silver dollar. It is made from a water-based gel made of agarose, a complex carbohydrate long used in molecular biology. This gel has a few benefits. It is porous, allowing nutrients and waste to circulate. And it is non-adhesive, so cells wont stick to it. At the bottom of the dish sit 820 tiny recesses or wells. When cells are added to the dish about 1 million at a time roughly 1,000 sink to the bottom of each well and form a pile. These close quarters allow cells to self-assemble, or form natural cell-to-cell connections, a process not possible in traditional Petri dishes.

The result: microtissues consisting of hundreds of cells, even of different types. In Tissue Engineering, the Brown team describes how they combined human fibroblasts, which make connective tissue, and endothelial cells, which line the heart and blood vessels. The cells came together to form spheres and doughnut-shaped clusters. The process was quick self-assembly took place in less than 24 hours.

These microtissues have several potential uses, Morgan said. They can be used to test new cancer compounds and other drugs. And they can be transplanted into the body to regenerate tissue, such as pancreatic cells for diabetics. While there are other methods out there for making microtissues, our 3-D technology is fast, easy and inexpensive. It can make hundreds of thousands of microtissues in a single step.

Differences in culture techniques matter in biomedicine, according to a growing body of research. Studies show sometimes dramatic differences in the shape, function and growth patterns of cells cultured in 2-D compared with cells cultured in 3-D. For example, a recent Brown study found that nerve cells grown in 3-D environments grew faster, had a more realistic shape and deployed hundreds of different genes compared to cells grown in 2-D environments.

Thats why several laboratories are pursuing 3-D cell culture methods. Brown Technology Partnerships has filed a patent application based on the technology developed in the Morgan lab and is actively pursuing licensing partners.


'/>"/>

Contact: Wendy Lawton
Wendy_Lawton@brown.edu
401-863-1862
Brown University
Source:Eurekalert

Related biology news :

1. Brown-Harvard team solves mobile DNAs surgical sleight-of-hand
2. Prions rapidly remodel good protein into bad, Brown study shows
3. How nice, brown rice: Study shows rice bran lowers blood pressure in rats
4. Brown seaweed contains promising fat fighter, weight reducer
5. Brown scientists map structure of DNA-doctoring protein complex
6. Chemicals in brown algae may protect against skin cancer
7. Brown team finds crucial protein role in deadly prion spread
8. Brown cancer biologists identify major player in cell growth
9. Bones in motion: Brown scientists to create new 3-D X-ray system
10. Wisconsin scientists grow critical nerve cells
11. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:9/24/2019)... ... September 24, 2019 , ... A-Alpha Bio , a ... announced today that it has raised $2.8M from leading science-focused venture capital firms ... AME Cloud Ventures, Boom Capital, Madrona Venture Group, Sahsen Ventures, Washington Research Foundation, ...
(Date:9/17/2019)... ... 17, 2019 , ... Dual-board certified periodontist and implant surgeon, ... of Implant Dentistry (ASID) Accreditation Courses. His lecture, “Understanding the Soft and Hard ... Modern Implant Dentistry course. Dr. Kim’s expertise comes from years of experience providing ...
(Date:9/8/2019)... ... September 06, 2019 , ... ... of innovative human mesenchymal stem/stromal cell (hMSC) biomanufacturing systems, today announces its ... paired cell and media system designed for product development. RoosterBio continues to ...
Breaking Biology News(10 mins):
(Date:10/3/2019)... ... ... eKare’s inSight® digital 3D imaging and wound measurement system has been selected to ... Science Network (EMAHSN), the innovation arm of the NHS. The program was designed to ... deploy solutions to the most pressing challenges facing the NHS. , The Digital ...
(Date:9/24/2019)... ... September 24, 2019 , ... ... research in the area of high-level X-ray methods using synchrotron-produced X-rays to ... of Improved Pharma, will present “Synchrotron X-Ray Diffraction and Pair Distribution Function ...
(Date:9/24/2019)... ... September 24, 2019 , ... The ... RD, to its Scientific Advisory Board. Dr. Holscher is an Assistant Professor of ... of Nutritional Sciences at the University of Illinois Urbana-Champaign, where she has affiliate ...
(Date:9/17/2019)... (PRWEB) , ... September 17, 2019 , ... Tucker, a ... At only four months old, Tucker was limping and lame on his right hip ... elbow dysplasia and it was called “the worst case the vet had seen.” He ...
Breaking Biology Technology: