Navigation Links
Brown scientists take the petri dish to new dimensions
Date:9/19/2007

PROVIDENCE, R.I. [Brown University] A team of Brown University biomedical engineers has invented a 3-D Petri dish that can grow cells in three dimensions, a method that promises to quickly and cheaply produce more realistic cells for drug development and tissue transplantation.

The technique employs a new dish cleverly crafted from a sugary substance long used in science laboratories that allows cells to self-assemble naturally and form microtissues. A description of how the 3-D dish works appears in the journal Tissue Engineering.

Its a new technology with a lot of promise to improve biomedical research, said Jeffrey Morgan, a Brown professor of medical science and engineering.

Morgan conceived and created the 3-D Petri dish with a team of Brown students led by Anthony Napolitano, a Ph.D. candidate in the biomedical engineering program. Napolitano spent two years perfecting the new dish and recently won a $15,000 award from the National Collegiate Inventors and Innovators Alliance to develop the patent-pending technology into a commercially viable product.

This technology is an inexpensive and easy-to-use alternative to current 3-D cell culture methods, Napolitano said. Its the next generation.

The technology tackles a topic of increasing interest to scientists: creating hothouse cells that look and behave more like cells grown in the human body. Since 1877, scientists have relied on the Petri dish to grow, or culture, cells. The cells stick to the bottom of the dishes and spread out as they multiply. In the body, however, cells dont grow that way. They are surrounded by other cells in three dimensions, forming tissues such as skin, muscle, and bone. This is what happens in Morgans 3-D dish.

The clear, rubbery dish is the size of a silver dollar. It is made from a water-based gel made of agarose, a complex carbohydrate long used in molecular biology. This gel has a few benefits. It is porous, allowing nutrients and waste to circulate. And it is non-adhesive, so cells wont stick to it. At the bottom of the dish sit 820 tiny recesses or wells. When cells are added to the dish about 1 million at a time roughly 1,000 sink to the bottom of each well and form a pile. These close quarters allow cells to self-assemble, or form natural cell-to-cell connections, a process not possible in traditional Petri dishes.

The result: microtissues consisting of hundreds of cells, even of different types. In Tissue Engineering, the Brown team describes how they combined human fibroblasts, which make connective tissue, and endothelial cells, which line the heart and blood vessels. The cells came together to form spheres and doughnut-shaped clusters. The process was quick self-assembly took place in less than 24 hours.

These microtissues have several potential uses, Morgan said. They can be used to test new cancer compounds and other drugs. And they can be transplanted into the body to regenerate tissue, such as pancreatic cells for diabetics. While there are other methods out there for making microtissues, our 3-D technology is fast, easy and inexpensive. It can make hundreds of thousands of microtissues in a single step.

Differences in culture techniques matter in biomedicine, according to a growing body of research. Studies show sometimes dramatic differences in the shape, function and growth patterns of cells cultured in 2-D compared with cells cultured in 3-D. For example, a recent Brown study found that nerve cells grown in 3-D environments grew faster, had a more realistic shape and deployed hundreds of different genes compared to cells grown in 2-D environments.

Thats why several laboratories are pursuing 3-D cell culture methods. Brown Technology Partnerships has filed a patent application based on the technology developed in the Morgan lab and is actively pursuing licensing partners.


'/>"/>

Contact: Wendy Lawton
Wendy_Lawton@brown.edu
401-863-1862
Brown University
Source:Eurekalert

Related biology news :

1. Brown-Harvard team solves mobile DNAs surgical sleight-of-hand
2. Prions rapidly remodel good protein into bad, Brown study shows
3. How nice, brown rice: Study shows rice bran lowers blood pressure in rats
4. Brown seaweed contains promising fat fighter, weight reducer
5. Brown scientists map structure of DNA-doctoring protein complex
6. Chemicals in brown algae may protect against skin cancer
7. Brown team finds crucial protein role in deadly prion spread
8. Brown cancer biologists identify major player in cell growth
9. Bones in motion: Brown scientists to create new 3-D X-ray system
10. Wisconsin scientists grow critical nerve cells
11. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... -- NXT-ID, Inc. (NASDAQ:   NXTD ) ("NXT-ID" ... of independent Directors Mr. Robin D. Richards and ... furthering the company,s corporate governance and expertise. ... Gino Pereira , Chief Executive Officer ... guidance and benefiting from their considerable expertise as we move ...
(Date:4/5/2017)... April 5, 2017  The Allen Institute for Cell ... Explorer: a one-of-a-kind portal and dynamic digital window into ... data, the first application of deep learning to create ... cell lines and a growing suite of powerful tools. ... these and future publicly available resources created and shared ...
(Date:4/5/2017)... -- KEY FINDINGS The global market for ... of 25.76% during the forecast period of 2017-2025. The ... the growth of the stem cell market. ... INSIGHTS The global stem cell market is segmented on ... stem cell market of the product is segmented into ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... 11, 2017 , ... Disappearing forests and increased emissions are the main causes ... each year. Especially those living in larger cities are affected by air pollution related ... the most pollution-affected countries globally - decided to take action. , “I knew I ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... program has won a US2020 STEM Mentoring Award. Representatives of the FirstHand program ... in Volunteer Experience from US2020. , US2020’s mission is to change the trajectory ...
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon Program Committee is ... honoring scientists who have made outstanding contributions to analytical chemistry and applied spectroscopy. ... world’s leading conference and exposition for laboratory science, which will be held February ...
(Date:10/9/2017)... ... October 09, 2017 , ... ... the medical journal, Epilepsia, Brain Sentinel’s SPEAC® System which uses the surface ... detecting generalized tonic-clonic seizures (GTCS) using surface electromyography (sEMG). The prospective multicenter ...
Breaking Biology Technology: