Navigation Links
Brown chemist finds gray mold's killer gene
Date:12/1/2008

PROVIDENCE, R.I. [Brown University] Gray mold is a gardener's nightmare. The fungus, also known by its scientific name Botrytis cinerea, is a scourge to more than 200 agricultural and ornamental plant species, including staples such as tomatoes, strawberries, snap and lima beans, cabbage, lettuce and endive, peas, peppers, and potatoes. Gray mold envelops its target in a velvety vise, releasing a toxin that poisons the host plants' cells, eventually causing the plant to die.

So far, the only way to eliminate the pathogen is to spray plants with fungicides, which can be costly and can contaminate the surrounding environment.

Now Brown University chemist David Cane, working with researchers in France and Spain, has figured out how the fungus's deadly toxin is made and how it might be disarmed naturally. In a paper published online in ACS Chemical Biology, the scientists have identified the set of genes that manufactures the toxin and in particular the central gene the fungus uses for this synthesis. They also have also shown that shutting off this gene by interrupting the fungus's DNA completely shuts down toxin production, removing the special weapon the mold uses to kill and invade target plant cells.

"It's a big step to being able to disarm this toxin naturally through a combination of DNA sequencing and chemistry," said Cane, the Vernon K. Krieble Professor of Chemistry and professor of biochemistry, one of three primary authors of the paper.

The researchers, led by French scientist and paper co-author Muriel Viaud, started by determining the complete DNA sequence for Botrytis cinerea. Working with Spanish organic chemist and paper co-author Isidro Collado, the scientists focused on the chemical agent botrydial that gray mold uses to overwhelm host plants.

From among the roughly 9,000 genes present in gray mold, the researchers identified a cluster of five genes that is responsible for production of botrydial. They then sought to learn how this cluster manufactures the chemical agent and which of the genes was the mastermind in the production.

The culprit is an enzyme called a sesquiterpene cyclase, Cane's laboratory found.

"The metabolic pathways for creating organic compounds typically involve gene clusters, like a package," Cane explained. "One great advantage to our investigation is that if you find one, you look to the left or to the right, and you find the others."

In laboratory tests, Cane and the team introduced a mutant gene that deleted the sesquiterpene cyclase, which completely abolished production of the toxin.

"This means that if you can inhibit the enzyme from this pathway, you can eliminate this toxin," Cane said.

The team now is working on a similar procedure to tackle a strain of Botrytis cinerea that is able to produce both botrydial and a second toxin that it uses to attack its plant targets.


'/>"/>

Contact: Richard Lewis
Richard_Lewis@Brown.edu
401-863-3766
Brown University
Source:Eurekalert  

Related biology news :

1. How do bacteria swim? Brown physicists explain
2. Brown scientist finds coastal dead zones may benefit some species
3. Carnegie Mellon to receive $900,000 from EPA for brownfields research
4. Brown University and Women & Infants Hospital expand national childrens study to Bristol County
5. Brown tree snake could mean Guam will lose more than its birds
6. Brown to host conference on advances in neurotechnology
7. Brown opens institute for molecular and nanoscale innovation
8. Brown scientists say biodiversity is crucial to ecosystem productivity
9. Eliminating germline lengthens fly lifespan, Brown study shows
10. Brown hosts regional bioengineering conference
11. New study changes conditions for Spanish brown bears
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Brown chemist finds gray mold's killer gene
(Date:4/15/2016)... 15, 2016 Research and ... Biometrics Market 2016-2020,"  report to their offering.  , ... , ,The global gait biometrics market is expected ... the period 2016-2020. Gait analysis generates ... be used to compute factors that are not ...
(Date:4/13/2016)...  IMPOWER physicians supporting Medicaid patients in ... standard in telehealth thanks to a new partnership with ... IMPOWER patients can routinely track key health measurements, such ... and, when they opt in, share them with IMPOWER ... local retail location at no cost. By leveraging this ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys has ... CEO, Barrett Bready , M.D., who returned to ... the original technical leadership team, including Chief Technology Officer, ... Product Development, Steve Nurnberg and Vice President of Software ... the company. Dr. Bready served as CEO ...
Breaking Biology News(10 mins):
(Date:5/2/2016)... PHILADELPHIA, PA (PRWEB) , ... May 02, 2016 ... ... is proud to report on the pre-launch success of their revolutionary, veterinarian-designed product ... allowing cats to stalk, trap, and play with their food the way nature ...
(Date:4/29/2016)... ... April 29, 2016 , ... Amendia, Inc., a leading ... today announced the completion of a significant transaction and partnership that positions Amendia ... and partners. Kohlberg & Company, L.L.C. (“Kohlberg”), a leading private equity firm ...
(Date:4/29/2016)... Louisville, KY and San Diego, CA (PRWEB) , ... April 29, ... ... the National Stem Cell Foundation (NSCF) to support the development of a patient-specific stem ... by Dr. Andrés Bratt-Leal in the lab of Dr. Jeanne Loring at The Scripps ...
(Date:4/28/2016)... -- The report "Cryocooler Market by Type ... Support, Product Repairs & Refurbishment, Preventive Maintenance, and Customer ... published by MarketsandMarkets, the global market is expected to ... CAGR of 7.29% between 2016 and 2022. ... spread through 159 Pages and in-depth TOC on  "Cryocooler ...
Breaking Biology Technology: