Navigation Links
Brown biologist solves mystery of tropical grasses' origin
Date:2/8/2010

PROVIDENCE, R.I. [Brown University] Around 30 to 40 million years ago, grasses on Earth underwent an epic evolutionary upheaval. An assemblage capitalized on falling levels of atmospheric carbon dioxide by engineering an internal mechanism to concentrate the dwindling CO2 supply that, like a fuel-injection system in a car, could more efficiently convert sunlight and nutrients into energy.

The rise of C4 grasses is not disputed. They dominate in hot, tropical climes and now make up to 20 percent of our planet's vegetational covering. Scientists have pinned the rise of C4 plants primarily to dwindling concentrations of CO2. But C4 grasses have been closely linked with warmer temperatures. Indeed, on a map, C4 grasses are found along tropical gradients, while C3 grasses occupy the northern, or colder, end of the temperature gradient. Considering knowledge of their past and their current distribution, what was left to question?

Everything, apparently, according to Erika Edwards, an evolutionary biologist at Brown University. In a paper published online in the Proceedings of the National Academy of Sciences, Edwards and Stephen Smith, a postdoctoral researcher at the National Evolutionary Synthesis Center in North Carolina, have found that rainfall not temperature was the primary trigger for C4 grasses' evolutionary beginnings. Moreover, the pair say C4 grasses were already in tropical forests before moving out of the shade of the taller trees and into drier, sunnier environments.

"We've kind of changed the story a bit," said Edwards, assistant professor of biology.

The paper is important, Smith said, because it "demonstrates the importance of precipitation in the evolution of grasses and particularly in the evolution of C4 grasses specifically, their movement into drier, not necessarily warmer climates."

To arrive at their findings, the biologists compiled a database of roughly 1.1 million specimens of grasses collected by botanists worldwide. They mapped the locations for these species and then added global precipitation and temperature charts.

"By combining all these data," Edwards said, "we could get individual climate profiles for each grass species."

The pair then went a step further. They whittled the list to approximately 1,230 species for which the plants' genes had been sequenced and from there built a phylogenetic profile for the collection, the most comprehensive evolutionary tree to date for grasses. The reason for building the phylogeny, Edwards said, was to tease out the junctures at which C3 and C4 grasses diverged over time. The scientists zeroed in on 21 such "transition nodes" and examined the climatic conditions during those branching periods.

They found that in 18 of the 21 instances, precipitation, rather than temperature, had changed. "That was the clincher," Edwards said.

Looking more closely at the differences in rainfall, Edwards and Smith noticed the shifts in the amount of rainfall between C3 and C4 grasses in the tropics dictated in sharp relief how the different lineages evolved. Generally speaking, C3 grasses flourished in areas that received, on average, 1,800 millimeters (71 inches) of rain annually; C4 grasses took root in areas that received, on average, 1,200 millimeters (47 inches) of rain annually.

"Twelve-hundred millimeters isn't a desert," Edwards noted. "It's still a fairly mesic place. And so when you start looking at climate profiles, these closely related C3 and C4 lineages are straddling this transition zone between tropical forests and tropical woodlands and savanna."

So, did C4 grasses evolve in the tropical forest and then move out from the canopy or did they move out first and then adopt a different photosynthetic pathway? Edwards isn't sure, but she thinks the pathway may have begun to form with C3 grasses on the forest margins, where those plants would have been subjected to greater fluctuations in precipitation, sunlight, temperature and other environmental stresses, spurring the photosynthetic innovation.

What that all means for the future of C4 grasses and climate change is an open question. While the grasses would presumably benefit from projections of lower mean rainfall in some areas of the tropics, they may be less competitive with rising levels of atmospheric CO2. Also, the effects of changes in land through deforestation and other practices would need to be considered, Edwards said.

In a related finding, the scientists attempt to explain the dominance of a lineage of C3 grasses, called Pooideae, in northern, cold areas of the globe, such as the Mongolian steppes. "The global latitudinal gradients of C3 and C4 always has been explained by the physiological advantages that C4 grasses have under high temperatures," Edwards explained. "No one has considered that the evolution of cold tolerance might have been equally important in setting up that latitudinal gradient. Climatically speaking, the cool-climate Pooideae are really the grasses that are doing something very different."

"It highlights the apparently important role that cold tolerance has played for the evolution of non-C4 grasses and especially the group Pooideae, which includes rye, barley, and wheat and many of the other grasses in the temperate and boreal habitats," Smith said.


'/>"/>

Contact: Richard Lewis
Richard_Lewis@Brown.edu
401-863-3766
Brown University
Source:Eurekalert

Related biology news :

1. Brown fat cells make spare tires shrink
2. Brown and beige dominate the plate: Daily dose of color needed to fill Americas phytonutrient gap
3. Northern brown bears discovered feeding on whitefish runs
4. New research to unravel how nutrients drive toxic brown tides on East Coast
5. Brain-computer interface, developed at Brown, begins new clinical trial
6. Cold and brown fat raise the prospect of a new method of treating obesity
7. Brown-led team offers first look at how bats land
8. Carnegies Donald Brown receives lifetime achievement award from Society for Developmental Biology
9. Moving in for the winter toxic brown recluse spiders pose danger
10. Men are red, women are green, Brown researcher finds
11. Brown chemist finds gray molds killer gene
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/7/2016)...   Avanade is helping Williams Martini Racing, ... history, exploit biometric data in order to critically analyse ... competitive edge against their rivals after their impressive, record-breaking ... has worked with Williams during the 2016 season to ... rate, breathing rate, temperature and peak acceleration) for key ...
(Date:12/5/2016)... 2016  The Office of Justice Programs, National ... Scans Enhance or Replace Medico Legal Autopsies?" on ... or replacing forensic autopsies with postmortem X-ray computed ... In response to recommendations made by The National ... scans as a potential component of medicolegal death ...
(Date:11/29/2016)... BioDirection, a privately held medical device company ... detection of concussion and other traumatic brain injury (TBI), ... meeting with the U.S. Food and Drug Administration (FDA) ... During the meeting company representatives reviewed plans for clinical ... commencement of a planned pilot trial. ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... report analyzes the worldwide markets for Biostimulants in US$ by ... Extract Based, and Others. The report also analyzes the Global ... Crops, and Others. The report provides separate comprehensive analytics for ... , Europe , Asia-Pacific ... of World. Annual estimates and forecasts are provided for the ...
(Date:12/8/2016)... DIEGO, Dec. 8, 2016  OncoSec Medical Incorporated ... developing DNA-based intratumoral cancer immunotherapies, today announced financial ... "We are delivering on our commitment ... with ImmunoPulse® IL-12. We are pleased with the ... combination trial, and we are focused on advancing ...
(Date:12/8/2016)... December 8, 2016 AskLinkerReports.com has published ... titled Global Amyloglucosidase Industry 2016 Market Research Report. From a ... industry chain overview are all covered in the report. This ... investment return analysis of the Amyloglucosidase industry. ... , , ...
(Date:12/8/2016)... , Dec. 8, 2016  Renova™ Therapeutics, ... congestive heart failure and type 2 diabetes, announced ... a novel adeno-associated virus (AAV) vector developed in ... M.D., Ph.D., at Stanford University. The company plans ... paracrine gene therapy product pipeline. ...
Breaking Biology Technology: