Navigation Links
Breeding better grasses for food and fuel
Date:1/17/2012

Researchers from the Biotechnology and Biological Sciences Research Council (BBSRC) Sustainable Bioenergy Centre (BSBEC) have discovered a family of genes that could help us breed grasses with improved properties for diet and bioenergy.

The research was carried out by a team from the University of Cambridge and Rothamsted Research, which receives strategic funding from BBSRC. Their findings are published today (Tuesday 17 Jan) in the journal Proceedings of the National Academy of Sciences (PNAS).

The genes are important in the development of the fibrous, woody parts of grasses, like rice and wheat. The team hopes that by understanding how these genes work, they might for example be able to breed varieties of cereals where the fibrous parts of the plants confer dietary benefits or crops whose straw requires less energy-intensive processing in order to produce biofuels.

The majority of the energy stored in plants is contained within the woody parts, and billions of tons of this material are produced by global agriculture each year in growing cereals and other grass crops, but this energy is tightly locked away and hard to get at. This research could offer the possibility of multi-use crops where the grain could be used for food and feed and the straw used to produce energy efficiently. This is crucial if we are to ensure that energy can be generated sustainably from plants, without competing with food production.

Professor Paul Dupree, of the University of Cambridge, explains "Unlike starchy grains, the energy stored in the woody parts of plants is locked away and difficult to get at. Just as cows have to chew the cud and need a stomach with four compartments to extract enough energy from grass, we need to use energy-intensive mechanical and chemical processing to produce biofuels from straw.

"What we hope to do with this research is to produce varieties of plants where the woody parts yield their energy much more readily but without compromising the structure of the plant. We think that one way to do this might be to modify the genes that are involved in the formation of a molecule called xylan a crucial structural component of plants."

Xylan is an important, highly-abundant component of the tough walls that surround plant cells. It holds the other molecules in place and so helps to make a plant robust and rigid. This rigidity is important for the plant, but locks in the energy that we need to get at in order to produce bioenergy efficiently.

Grasses contain a substantially different form of xylan to other plants. The team wanted to find out what was responsible for this difference and so looked for genes that were turned on much more regularly in grasses than in the model plant Arabidopsis. Once they had identified the gene family in wheat and rice, called GT61, they were able transfer it into Arabidopsis, which in turn developed the grass form of xylan.

Dr Rowan Mitchell of Rothamsted Research continues "As well as adding the GT61 genes to Arabidopsis, we also turned off the genes in wheat grain. Both the Arabidopsis plants and the wheat grain appeared normal, despite the changes to xylan. This suggests that we can make modifications to xylan without compromising its ability to hold cell walls together. This is important as it would mean that there is scope to produce plant varieties that strike the right balance of being sturdy enough to grow and thrive, whilst also having other useful properties such as for biofuel production."

The tough, fibrous parts of plants are also an important component of our diet as fibre. Fibre has a well established role in a healthy diet, for example, by lowering blood cholesterol. The team have already demonstrated that changing GT61 genes in wheat grain affects the dietary fibre properties so this research also offers the possibility of breeding varieties of cereals for producing foods with enhanced health benefits.

Duncan Eggar, BBSRC Bioenergy Champion said: "Recent reports have underlined the important role that bioenergy can play in meeting our future energy needs but they all emphasise that sustainability must be paramount.

"Central to this will be ensuring that we can get energy efficiently from woody sources that need not compete with food supply. This research demonstrates how, by understanding the fundamental biology of plants, we can think about how to produce varieties of crops with useful traits, specifically for use as a source of energy."


'/>"/>

Contact: Mike Davies
mike.davies@bbsrc.ac.uk
44-179-341-4694
Biotechnology and Biological Sciences Research Council
Source:Eurekalert

Related biology news :

1. Worlds first captive breeding of Ozark hellbenders at Saint Louis Zoo
2. Female promiscuity can rescue populations from harmful effects of inbreeding
3. Smells may help birds find their homes, avoid inbreeding
4. Captive breeding could transform the saltwater aquarium trade and save coral reefs
5. Breeding soybeans for improved feed
6. Plant breeding revolution for cassava, banana
7. Breeding ozone-tolerant crops
8. Crop breeding could slash CO2 levels
9. Dissecting the genomes of crop plants to improve breeding potential
10. Bizarre insect inbreeding signals an end to males: News tips from the American Naturalist
11. Lost bats found breeding on Scilly
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/18/2016)... , March 18, 2016 ... Suppliers of Biometrics, ICT, Manned & Unmanned Vehicles, Physical infrastructure ... & security companies in the border security market and the ... and Europe has led visiongain ... companies improved success. --> defence & security ...
(Date:3/14/2016)... HANOVER , Allemagne, March 14, 2016 /PRNewswire/ ... http://www.apimages.com ) - --> - ... ) - --> ... les solutions biométriques, fournit de nouveaux lecteurs d,empreintes ... lecteur LF10 de DERMALOG sera utilisé pour produire ...
(Date:3/9/2016)... , March 9, 2016 This BCC Research ... states of the RNA Sequencing (RNA Seq) market for ... as instruments, tools and reagents, data analysis, and services. ... segments of the RNA-Sequencing market such as RNA-Sequencing tools ... the main factors affecting each segment and forecast their ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... (PRWEB) , ... May 25, 2016 , ... ... features a variety of fracture-specific plating options designed to address fractures of the ... fracture fixation solutions. , The Acumed Ankle Plating System 3 is composed of ...
(Date:5/25/2016)... SALT LAKE CITY, UTAH. (PRWEB) , ... May 25, 2016 , ... ... create efficiencies in healthcare information exchange, today announced that Charles W. Stellar has been ... served as WEDI’s interim CEO since January 2016. As an executive leader with more ...
(Date:5/24/2016)... May 24, 2016   MedyMatch Technology Ltd ., the ... intelligence, real-time decision support tools in the emergency room, announced ... 2016 Israeli Advanced Technology Industries (IATI) BioMed Conference. ... 15th National Life Sciences and Technology Week, and ... Intercontinental Hotel in Tel Aviv, Israel . ...
(Date:5/23/2016)... (PRWEB) , ... May 23, 2016 , ... ... That Will Drive Precision Farming in 2017 and Beyond. The paper outlines the ... in the precision ag industry. , “We’ve witnessed a lot of highs and ...
Breaking Biology Technology: