Navigation Links
Breakthrough model reveals evolution of ancient nervous systems through seashell colors

PITTSBURGHDetermining the evolution of pigmentation patterns on mollusk seashellswhich could aid in the understanding of ancient nervous systemshas proved to be a challenging feat for researchers. Now, however, through mathematical equations and simulations, University of Pittsburgh and University of California, Berkeley, researchers have used 19 different species of the predatory sea snail Conus to generate a model of the pigmentation patterns of mollusk shells.

"There is no evolutionary record of nervous systems, but what you're seeing on the surface of seashells is a space-time record, like the recording of brain-wave activity in an electroencephalogram (EEG)," said project coinvestigator G. Bard Ermentrout, Pitt Distinguished University Professor of Computational Biology and a professor in the Kenneth P. Dietrich School of Arts and Sciences' Department of Mathematics.

Seashells differ substantially between the closely related Conus species, and the complexity of the patterns makes it difficult to properly characterize their similarities and differences. It also has proven difficult to describe the evolution of pigmentation patterns or to draw inferences about how natural selection might affect them. In a paper published in the Jan. 3 issue of the Proceedings of the National Academy of Sciences (PNAS) Online, Ermentrout and his colleagues attempt to resolve this problem by combining models based on natural evolutionary relationships with a realistic developmental model that can generate pigmentation patterns of the shells of the various Conus species.

In order for UC Berkeley scientists to create simulations, Ermentrout and his collaborators developed equations and a neural model for the formation of the pigmentation patterns on shell surfaces. With the equations in hand, Zhenquiang Gong, a UC Berkeley graduate student in engineering, used a computer to simulate the patterns on the shells, hand fitting the parameters to create a basic model for the patterns of a given species.

The results of this study have allowed the researchers to estimate the shell pigmentation patterns of ancestral species, identify lineages in which one or more parameters have evolved rapidly, and measure the degree to which different parameters correlate with the evolutionary development and history of the organisms. Since the parameters are telling the researchers something about the circuitry of the mollusks' nervous system, this is an indirect way to study the evolution of a simple nervous system.

"We've found that some aspects of the nervous system have remained quite stable over time, while there is a rapid evolution of other portions," said Ermentrout.

"In the future, we hope to use similar ideas to understand other pattern-forming systems that are controlled by the nervous system," Ermentrout added. "For instance, we would really like to develop models for some of the cephalopods like the cuttlefish and the octopus, which are able to change patterns on their skin in an instant."

Contact: B. Rose Huber
University of Pittsburgh

Related biology news :

1. Breakthrough optical technology to assess colon cancer risk, accuracy
2. Sandia, SES win Popular Mechanics Breakthrough Innovator Award
3. NC State finds new nanomaterial could be breakthrough for implantable medical devices
4. Adult stem cell breakthrough
5. A scientific breakthrough on the control of the bad cholesterol
6. Fly guy makes memory breakthrough
7. Researchers make breakthrough in the production of double-walled carbon nanotubes
8. Key to future medical breakthroughs is systems biology, say leading European scientists
9. World breakthrough in treating premature babies
10. Mount Sinai Hospital researcher makes stem cell breakthrough
11. Stem cell breakthrough gives new hope to sufferers of muscle-wasting diseases
Post Your Comments:
(Date:10/6/2015)... Calif. , Oct. 6, 2015  Maverix ... today announced enhancements to its software portfolio with ... analysis kit for differential expression in eukaryotes. The ... which is a cloud-based genomic analysis solution that ... scientific discovery from next-generation sequencing efforts. ...
(Date:10/2/2015)... -- ) has announced ... Using Biometrics" report to their offering. ... of the "Enforcing the Law Using Biometrics" ... Research and Markets ( ) has announced ... Using Biometrics" report to their offering. ...
(Date:9/30/2015)... -- With nearly 300,000 Americans living with spinal cord injuries ... reach 12,500 annually, the role of Independent Living Centers ... Living (SCRS-IL) is increasingly important. SCRS-IL is one ... opening doors to independence for individuals with SCIs by ... technology services and education. "In serving people ...
Breaking Biology News(10 mins):
(Date:10/13/2015)... ... October 13, 2015 , ... InSphero AG , ... 3D cell culture models, has launched a 14 Day Hepatotoxicity Testing Service ... InSightâ„¢ Human Liver Microtissues. The service streamlines toxicity testing of compounds in ...
(Date:10/13/2015)... 2015 ARRY ), Avanex Life ... JUNO ), and Progenix Pharmaceuticals, Inc. (NASDAQ: PGNX ... Corp. (OTCQX: AVXLD), Juno Therapeutics, Inc. (NASDAQ: JUNO ... --> Cooperative research and development efforts with ... lead to advancements in the treatment of severe wounds. ...
(Date:10/13/2015)... , Oct. 13, 2015  According to ... services will reach $102 billion by the end ... of the health industry, as it is estimated ... result of laboratory tests. In addition to diagnosing ... to evaluate disease progression, monitor drug treatment and ...
(Date:10/13/2015)... ... October 13, 2015 , ... Proove Biosciences, a ... their partnership with the Keck Medicine of the University of Southern California ... T.R.O.J.A.N. Study (Therapeutic Evaluation to Research Clinical Objectives Linking Genotypic and Phenotypic Association ...
Breaking Biology Technology: