Navigation Links
Breakthrough made at Max F. Perutz Laboratories

This news release is available in German.

Researchers at the Max F. Perutz Laboratories (MFPL) of the University of Vienna and the Medical University of Vienna made a breakthrough for the Platynereis model system, as they describe the first method for generating specific and inheritable mutations in the species. The method, in combination with other tools, now places this marine bristle worm in an excellent position to advance research at the frontiers of neurobiology, chronobiology, evolutionary developmental biology and marine biology. The study and a review on Platynereis dumerilii genetic methods were chosen by the renowned journal Genetics as one of the May 2014 Highlights and also got the cover image.

Many fascinating biological phenomena, of which we currently have little to no molecular understanding, can be observed in the tiny marine bristle worm Platynereis dumerilii. It displays a slow rate of evolution, which permits analyses of ancestral genes and cell types, possesses a vertebrate-type hormonal system, as well as the ability to regenerate large pieces of its body. Furthermore, its reproductive timing is controlled by multiple timers a feature likely to be common to many other organisms. These characteristics make it an ideal model for evolutionary studies as well as for chronobiology, amongst other research fields. However, dissecting Platynereis gene function in vivo had remained challenging due to a lack of available tools.

TALENs as a new tool to engineer targeted modifications in Platynereis genes

To address this need, scientists from the Max F. Perutz Laboratories (MFPL) and the Research Platform "Marine Rhythms of Life" of the University of Vienna and supported by the VIPS (Vienna International Postdoctoral program) have now established customized transcriptional activator-like effector nucleases (TALENs) as a tool to engineer targeted modifications in Platynereis genes. These tailored enzymes bind specific DNA sequences and "cut" the genome at these locations. The repair mechanisms of the cell promptly repair the damage, however small errors in the form of insertions and deletions can be introduced during the repair process. The result is the generation of small mutations that render the protein product of the gene non-functional allowing the generation of the first-ever Platynereis mutants.

Future directions

The researchers found out that the induced mutations are heritable, demonstrating that TALENs can be used for generating mutant lines in this bristle worm. "This new tool opens the door for detailed in vivo functional analyses in Platynereis and can also facilitate further technical developments. For example, we hope to use TALENs to insert fluorescent reporter genes into the genome. In this way we can study how gene expression is regulated across the entire lifecycle", explains first author Stephanie Bannister, VIPS Postdoc in Florian Raible's group at the Department of Microbiology, Immunobiology and Genetics at the University of Vienna. She spearheaded the establishment of the technique. "In addition, we have provided a streamlined workflow that can serve as a template for the establishment of TALEN technology in other non-conventional and emerging model organisms", Stephanie Bannister adds.


Contact: Lilly Sommer
University of Vienna

Related biology news :

1. Major breakthrough in stem cell manufacturing technology
2. New invasive species breakthrough sparks interest around the world
3. A micro-muscular breakthrough
4. Scripps oceanography researchers engineer breakthrough for biofuel production
5. Breakthrough in adult heart repair
6. Breakthrough by Temple researchers could lead to new treatment for heart attack
7. Breakthrough research produces brighter, more efficiently produced lighting
8. ASU, Georgia Tech create breakthrough for solar cell efficiency
9. NTU scientists make breakthrough solar technology
10. Research breakthrough: Impaired autophagy associated with age-related macular degeneration
11. Scientific breakthrough reveals how vitamin B12 is made
Post Your Comments:
Related Image:
Breakthrough made at Max F. Perutz Laboratories
(Date:4/5/2017)... 2017  The Allen Institute for Cell Science today ... one-of-a-kind portal and dynamic digital window into the human ... first application of deep learning to create predictive models ... and a growing suite of powerful tools. The Allen ... future publicly available resources created and shared by the ...
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... to expand at a CAGR of 25.76% during the ... is the primary factor for the growth of the ... MARKET INSIGHTS The global stem ... technology, application, and geography. The stem cell market of ...
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... -- VMS BioMarketing, a leading provider of patient support solutions, has ... (CNE) network, which will launch this week. The VMS CNEs ... professionals to enhance the patient care experience by delivering peer-to-peer ... care professionals to help women who have been diagnosed and ... ...
(Date:10/11/2017)... ... ... Disappearing forests and increased emissions are the main causes of the evolving air ... living in larger cities are affected by air pollution related diseases. , That is ... globally - decided to take action. , “I knew I had to take action ...
(Date:10/11/2017)... Tampa Bay, Florida (PRWEB) , ... October 11, ... ... Food and Drug Administration (FDA) has granted orphan drug designation to SBT-100, its ... antibody (sdAb) for the treatment of osteosarcoma. SBT-100 is able to cross the ...
(Date:10/10/2017)... , ... October 10, 2017 ... ... cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing ... HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s ...
Breaking Biology Technology: