Navigation Links
Breakthrough in how pancreatic cancer cells ingest nutrients points to new drug target
Date:5/13/2013

In a landmark cancer study published online in Nature, researchers at NYU School of Medicine have unraveled a longstanding mystery about how pancreatic tumor cells feed themselves, opening up new therapeutic possibilities for a notoriously lethal disease with few treatment options. Pancreatic cancer kills nearly 38,000 Americans annually, making it a leading cause of cancer death. The life expectancy for most people diagnosed with it is less than a year.

Now new research reveals a possible chink in the armor of this recalcitrant disease. Many cancers, including pancreatic, lung, and colon cancer, feature a mutated protein known as Ras that plays a central role in a complex molecular chain of events that drives cancer cell growth and proliferation. It is well known that Ras cancer cells have special nutrient requirements to grow and survive. But how Ras cells cope to actually meet their extraordinary nutrient requirements has been poorly understooduntil now. In the study, led by Cosimo Commisso, a postdoctoral fellow in the Department of Biochemistry and Molecular Pharmacology at NYU School of Medicine, show for the first time how Ras cancer cells exploit a process called macropinocytosis to swallow up the protein albumin, which cells then harvest for amino acids essential for growth.

"A big mystery is how certain tumors meet their excessive nutrient demands ," says Dr. Commisso, whose work is funded in part by the Pancreatic Cancer Action Network. "We believe they accomplish this by macropinocytosis."

The findings suggest that Ras cancer cells are particularly dependent on macropinocytosis for growth and survival. When the researchers used a chemical to block the uptake of albumin via macropinocytosis in mice with pancreatic tumors, the tumors stopped growing and in some cases even shrank. Moreover, pancreatic cancer cells in mice featured more macropinosomesthe vesicles that transport nutrients deep into a cellthan normal mouse cells.

The discovery of a "protein eating" mechanism unique to some cancer cells sets the stage for drugs that could block the engulfing process without causing collateral damage to healthy cells and suggests new ways to ferry chemotherapeutic cargo into the heart of cancer cells.

"This work offers up a completely different way to target cancer metabolism," says lead principal investigator of the study Dafna Bar-Sagi, PhD, senior vice president and vice dean for Science, chief scientific officer and professor, Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, who first identified macropinocytosis in Ras-transformed cancer cells. "It's exciting to think that we can cause the demise of some cancer cells simply by blocking this nutrient delivery process."

Crucial to the team's findings is the work of Matthew G. Vander Heiden, assistant professor of biology at the David H. Koch Institute for Integrative Cancer Research at MIT and Christian Metallo, assistant professor of bioengineering at the University of California at San Diego, who characterized how Ras cells derive energy from the constituent amino acids released after protein engulfment.


'/>"/>

Contact: Christopher Rucas
Christopher.Rucas@nyumc.org
212-404-3525
NYU Langone Medical Center / New York University School of Medicine
Source:Eurekalert

Related biology news :

1. Breakthroughs in Chikungunya research from A*STAR spell new hope for better treatment and protection
2. Interventional radiology: Potential breakthrough to treat mens enlarged prostate
3. WanderID Launches Breakthrough ID Product for Children, Seniors
4. Nanotechnology breakthrough could dramatically improve medical tests
5. NTU researchers study little mighty creature for scientific breakthrough
6. Research breakthrough: High brain integration underlies winning performances
7. Breakthrough technology focuses in on disease traits of single cells
8. Forest carbon monitoring breakthrough in Colombia
9. Queens University Belfast makes significant cancer breakthrough
10. Humanized mice developed at OHSU enable malaria research breakthrough at Seattle BioMed
11. An important breakthrough in the fight against muscular dystrophies
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/28/2017)... , March 28, 2017 ... Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video ... and Region - Global Forecast to 2022", published by ... in 2016 and is projected to reach USD 75.64 ... 2017 and 2022. The base year considered for the ...
(Date:3/24/2017)... 24, 2017 The Controller General of Immigration from ... Abdulla Algeen have received the prestigious international IAIR Award for the ... Continue Reading ... ... Controller Abdulla Algeen (small picture on the right) have received the IAIR ...
(Date:3/23/2017)... , March 23, 2017 The report "Gesture Recognition and ... Industry, and Geography - Global Forecast to 2022", published by MarketsandMarkets, the market ... CAGR of 29.63% between 2017 and 2022. Continue ... ... ...
Breaking Biology News(10 mins):
(Date:4/20/2017)... MN and Bethesda, MD (PRWEB) , ... April ... ... Advancing Innovation announce the formation of a unique intellectual property (IP) sharing and ... potential of their most promising inventions. A main component of this effort is ...
(Date:4/19/2017)... ... April 18, 2017 , ... A number of new ... webinar, which is part of the Protein and Cell Analysis Education Webinar Series ... where this technology fits in current and future applications. , Many flow cytometers ...
(Date:4/19/2017)... NY (PRWEB) , ... April 19, 2017 , ... ... combat Clostridium difficile (C. diff) infections through education and advocacy. Founded in ... life to a C. diff infection, the foundation has become the most-consulted source ...
(Date:4/19/2017)... 19, 2017 Veracyte, Inc. ... it will report its first quarter 2017 financial ... 2017. Following the announcement, Veracyte,s management will host a live ... discuss the company,s financial results and business progress. ... may be accessed by visiting Veracyte,s website at  http://investor.veracyte.com . ...
Breaking Biology Technology: