Navigation Links
Breakthrough: With a chaperone, copper breaks through

Information on proteins is critical for understanding how cells function in health and disease. But while regular proteins are easy to extract and study, it is far more difficult to gather information about membrane proteins, which are responsible for exchanging elements essential to our health, like copper, between a cell and its surrounding tissues.

Now Prof. Nir Ben-Tal and his graduate students Maya Schushan and Yariv Barkan of Tel Aviv University's Department of Biochemistry and Molecular Biology have investigated how a type of membrane protein transfers essential copper ions throughout the body. This mechanism, Schushan says, could also be responsible for how the body absorbs Cisplatin, a common chemotherapy drug used to fight cancer. In the future, this new knowledge may allow scientists to improve the way the drug is transferred throughout the body, she continues.

Their breakthrough discovery was detailed in a recent issue of PNAS (Proceedings of the National Academy of Sciences).

Cellular gatekeepers and chaperones

Most proteins are water soluble, which allows for easy treatment and study. But membrane proteins reside in the greasy membrane that surrounds a cell. If researchers attempt to study them with normal technology of solubilization in water, they are destroyed ― and can't be studied.

Copper, which is absorbed into the body through a membrane protein, is necessary to the healthy functioning of the human body. A deficiency can give rise to disease, while loss of regulation is toxic. Therefore, the cell handles copper ions with special care. One chaperone molecule delivers the copper ion to an "entrance gate" outside the cell; another chaperone then picks it up and carries it to various destinations inside the cell.

The researchers suggest that this delicate system is maintained by passing one copper ion at a time by the copper transporter, allowing for maximum control of the copper ions. "This way, there is no risk of bringing several copper ions into the protein at the same time, which ultimately prevents harmful chemical reactions between the ions and the abundant chemical reagents within the cell," explains Prof. Ben-Tal. Once the ion has passed through the transporter into the cell, the transporter is ready to receive another copper ion if necessary.

Improving cancer drugs ― and more

The mechanism which transfers copper throughout the body may also be responsible for the transfer of the common chemotherapy drug Cisplatin. By studying how copper is transferred throughout the body, researchers may also gain a better understanding of how this medication and others are transferred into the cell.

With this information, says Prof. Ben-Tal, scientists could improve the transfer of the drug throughout the body, or develop a more effective chemotherapy drug. And that's not the only pharmaceutical dependent on the functioning of membrane proteins. "Sixty percent of drugs target membrane proteins," he explains, "so it's critical to learn how they function."


Contact: George Hunka
American Friends of Tel Aviv University

Related biology news :

1. Stem cell breakthrough: Monitoring the on switch that turns stem cells into muscle
2. Behavior breakthrough: Like animals, plants demonstrate complex ability to integrate information
3. International copper industry defines role in the fight against hospital infections
4. Consumers over age 50 should consider steps to cut copper and iron intake
5. Additive copper-zinc interaction affects toxic response in soybean
6. Montana State University historian wins prize for book on Montana, Utah copper mines
7. New screen offers hope for copper deficiency sufferers
8. CEAP study examines nitrogen, copper levels in Bay watershed
9. Hidden infections crucial to understanding, controlling disease outbreaks
10. Fowl soil additive breaks down crude oil
11. US tax breaks subsidize foreign oil production
Post Your Comments:
(Date:11/19/2015)... , Nov. 19, 2015  Based on its in-depth ... Sullivan recognizes BIO-key with the 2015 Global Frost & ... Frost & Sullivan presents this award to the company ... to the needs of the market it serves. The ... meets and expands on customer base demands, the overall ...
(Date:11/17/2015)... Paris from 17 th until 19 ... from 17 th until 19 th November 2015. ... invented the first combined scanner in the world which scans ... now two different scanners were required: one for passports and ... the same surface. This innovation is an ideal solution for ...
(Date:11/16/2015)... 16, 2015  Synaptics Inc. (NASDAQ: SYNA ... today announced expansion of its TDDI product portfolio ... controller and display driver integration (TDDI) solutions designed ... new TDDI products add to the previously-announced ... (WQHD resolution), and TD4322 (FHD resolution) solutions. All ...
Breaking Biology News(10 mins):
(Date:11/26/2015)... 26, 2015 ... Accutest Research Laboratories, a leading independent ... (CRO), has formed a strategic partnership ... Temple Health for joint work on ... ) , --> ...
(Date:11/26/2015)... , England , November 26, 2015 ... Lightpoint Medical, an innovative medical device company specializing in imaging ... grant from the European Commission as part of the Horizon ... the company to carry out a large-scale clinical trial in ... -->      (Logo: , --> ...
(Date:11/25/2015)... , November 26, 2015 ... Biobanking Market 2016 - 2020 report analyzes that ... integrity and quality in long-term samples, minimizing manual ... cost-effectiveness. Automation minimizes manual errors such as mislabeling ... efficiency. Further, it plays a vital role in ...
(Date:11/25/2015)... , Nov. 25, 2015  PharmAthene, Inc. (NYSE MKT: ... adopted a stockholder rights plan (Rights Plan) in an ... loss carryforwards (NOLs) under Section 382 of the Internal ... --> PharmAthene,s use of its NOLs could be ... as defined in Section 382 of the Code. In ...
Breaking Biology Technology: