Navigation Links
Breaking the ties that bind: New hope for biomass fuels
Date:4/22/2009

LOS ALAMOS, New Mexico, April 22, 2009Los Alamos National Laboratory researchers have discovered a potential chink in the armor of fibers that make the cell walls of certain inedible plant materials so tough. The insight ultimately could lead to a cost-effective and energy-efficient strategy for turning biomass into alternative fuels.

In separate papers published today in Biophysical Journal and recently in an issue of Biomacromolecules, Los Alamos researchers identify potential weaknesses among sheets of cellulose molecules comprising lignocellulosic biomass, the inedible fibrous material derived from plant cell walls. The material is a potentially abundant source of sugar that can be used to brew batches of methanol or butanol, which show potential as biofuels.

Cellulose is biosynthesized in plant cells when molecules of glucosea simple sugarjoin into long chains through a process called polymerization. The plant then assembles these chains of cellulose into sheets. The sheets are held together by hydrogen bondsan electrostatic attraction of a positive portion of a molecule to a negative portion of the same or neighboring molecule. Finally, the sheets stack atop one another, sticking to themselves by other types of attractions that are weaker than hydrogen bonds. The plant then spins these sheets into high-tensile-strength fibers of material.

Not only are the fibers incredibly strong, but they are incredibly resistant to the action of enzymes called cellulases that can crack the fibers back into their simple-sugar components. The ability to economically and easily break cellulose into sugars is desirable because the sugars can be used to create fuel alternatives. However, due to the tenacity of cellulose fibers, the United States currently lacks an energy-efficient and cost-effective method for turning inedible biomass such as switch grass or corn husks into a sweet source of biofuels.

Working with researchers from the U.S. Department of Agriculture and the Centre de Recherches sur les Macromolcules Vgtales in France, Los Alamos researcher Paul Langan used neutrons to probe the crystalline structure of highly crystalline cellulose, much like an X-ray is used to probe the hidden structures of the body. Langan and his colleagues found that although cellulose generally has a well-ordered network of hydrogen bonds holding it together, the material also displays significant amounts of disorder, creating a different type of hydrogen bond network at certain surfaces. These differences make the molecule potentially vulnerable to an attack by cellulase enzymes.

Moreover, in this month's Biophysical Journal, Los Alamos researchers Tongye Shen and Gnana Gnanakaran describe a new lattice-based model of crystalline cellulose. The model predicts how hydrogen bonds in cellulose can shift to remain stable under a wide range of temperatures. This plasticity allows the material to swap different types of hydrogen bonds but also constrains the molecules so that they must form bonds in the weaker configuration described by Langan and his colleagues. Most important, Shen and Gnanakaran's model identifies hydrogen bonds that can be manipulated via temperature differences to potentially make the material more susceptible to attack by enzymes that can crack the fibers into sugars for biofuel production.

"We have been able to identify a chink in the armor of a very tough and worthy adversarythe cellulose fiber," said Gnanakaran, who leads the theoretical portion of a large, multidisciplinary biofuels project at Los Alamos.

"These results are some of the first to come from this team, and eventually could point us toward an economical and viable process for making biofuels from cellulosic biomass," adds Langan, director of the biofuels project.


'/>"/>

Contact: James Rickman
jamesr@lanl.gov
505-665-9203
DOE/Los Alamos National Laboratory
Source:Eurekalert

Related biology news :

1. Tufts students host Earth Day with groundbreaking ceremony for solar house
2. NIH funds development of resistance-breaking insecticides to reduce malaria transmission
3. Breaking the barrier: Discovery of anti-resistance factors and novel ocean drugs
4. Groundbreaking discovery may lead to stronger antibiotics
5. Breaking harmful bonds
6. EPA funds ground-breaking Lyme disease research
7. Breaking news: Study revives Olympic prospects for amputee sprinter
8. Shell-breaking crabs lived 20 million years earlier than thought
9. BGSU undergraduates to pilot groundbreaking genome project
10. Scientists discover record-breaking hydrogen storage materials for use in fuel cells
11. Speed plays crucial role in breaking proteins H-bonds
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/9/2017)... , Feb. 9, 2017 The biomass ... analysis of the biomass boiler market globally in terms ... of biomass boilers. The market for biomass boilers has ... type, end-user, application, and country/region. The market based on ... & forest residues, biogas & energy crops, urban residues, ...
(Date:2/8/2017)... Feb. 7, 2017 Report Highlights ... 2021 from $8.3 billion in 2016 at a compound ... 2021. Report Includes - An overview of the ... trends, with data from 2015 and 2016, and projections ... Segmentation of the market on the basis of product ...
(Date:2/3/2017)... , Feb. 3, 2017  Texas Biomedical Research Institute announced ... Larry Schlesinger as the Institute,s new President and ... effective May 31, 2017. He is currently the Chair of ... the Center for Microbial Interface Biology at Ohio State University. ... the new President and CEO of Texas Biomed," said Dr. ...
Breaking Biology News(10 mins):
(Date:2/22/2017)... DIEGO , Feb. 22, 2017  Creative ... expansion of its translational research program using its ... of laboratory facilities in San Diego.  The Company ... BioLabs facility, a biotechnology incubator sponsored by the ... In November 2016, the Company obtained an ...
(Date:2/21/2017)... - SQI Diagnostics Inc. ("SQI" or the "Company") (TSX-V: SQD; OTCQX: ... months ended December 31, 2016. SQI is ... company that develops and commercializes proprietary technologies and products for ... ... milestones achieved in fiscal 2016," said Andrew Morris , ...
(Date:2/21/2017)... Switzerland (PRWEB) , ... February 21, 2017 , ... ... biopharmaceutical and biotech research and development (R&D), today announced the establishment of Genedata ... by Managing Director Kevin Teburi, a recognized expert in life science informatics. Creating ...
(Date:2/21/2017)... Chicago, IL (PRWEB) , ... ... ... launch of the Life -Sciences division, Treximo will pair its $200M operational ... class, results-based consulting and project management in areas affecting quality and operational ...
Breaking Biology Technology: