Navigation Links
Breaking the ties that bind: New hope for biomass fuels
Date:4/22/2009

LOS ALAMOS, New Mexico, April 22, 2009Los Alamos National Laboratory researchers have discovered a potential chink in the armor of fibers that make the cell walls of certain inedible plant materials so tough. The insight ultimately could lead to a cost-effective and energy-efficient strategy for turning biomass into alternative fuels.

In separate papers published today in Biophysical Journal and recently in an issue of Biomacromolecules, Los Alamos researchers identify potential weaknesses among sheets of cellulose molecules comprising lignocellulosic biomass, the inedible fibrous material derived from plant cell walls. The material is a potentially abundant source of sugar that can be used to brew batches of methanol or butanol, which show potential as biofuels.

Cellulose is biosynthesized in plant cells when molecules of glucosea simple sugarjoin into long chains through a process called polymerization. The plant then assembles these chains of cellulose into sheets. The sheets are held together by hydrogen bondsan electrostatic attraction of a positive portion of a molecule to a negative portion of the same or neighboring molecule. Finally, the sheets stack atop one another, sticking to themselves by other types of attractions that are weaker than hydrogen bonds. The plant then spins these sheets into high-tensile-strength fibers of material.

Not only are the fibers incredibly strong, but they are incredibly resistant to the action of enzymes called cellulases that can crack the fibers back into their simple-sugar components. The ability to economically and easily break cellulose into sugars is desirable because the sugars can be used to create fuel alternatives. However, due to the tenacity of cellulose fibers, the United States currently lacks an energy-efficient and cost-effective method for turning inedible biomass such as switch grass or corn husks into a sweet source of biofuels.

Working with researchers from the U.S. Department of Agriculture and the Centre de Recherches sur les Macromolcules Vgtales in France, Los Alamos researcher Paul Langan used neutrons to probe the crystalline structure of highly crystalline cellulose, much like an X-ray is used to probe the hidden structures of the body. Langan and his colleagues found that although cellulose generally has a well-ordered network of hydrogen bonds holding it together, the material also displays significant amounts of disorder, creating a different type of hydrogen bond network at certain surfaces. These differences make the molecule potentially vulnerable to an attack by cellulase enzymes.

Moreover, in this month's Biophysical Journal, Los Alamos researchers Tongye Shen and Gnana Gnanakaran describe a new lattice-based model of crystalline cellulose. The model predicts how hydrogen bonds in cellulose can shift to remain stable under a wide range of temperatures. This plasticity allows the material to swap different types of hydrogen bonds but also constrains the molecules so that they must form bonds in the weaker configuration described by Langan and his colleagues. Most important, Shen and Gnanakaran's model identifies hydrogen bonds that can be manipulated via temperature differences to potentially make the material more susceptible to attack by enzymes that can crack the fibers into sugars for biofuel production.

"We have been able to identify a chink in the armor of a very tough and worthy adversarythe cellulose fiber," said Gnanakaran, who leads the theoretical portion of a large, multidisciplinary biofuels project at Los Alamos.

"These results are some of the first to come from this team, and eventually could point us toward an economical and viable process for making biofuels from cellulosic biomass," adds Langan, director of the biofuels project.


'/>"/>

Contact: James Rickman
jamesr@lanl.gov
505-665-9203
DOE/Los Alamos National Laboratory
Source:Eurekalert

Related biology news :

1. Tufts students host Earth Day with groundbreaking ceremony for solar house
2. NIH funds development of resistance-breaking insecticides to reduce malaria transmission
3. Breaking the barrier: Discovery of anti-resistance factors and novel ocean drugs
4. Groundbreaking discovery may lead to stronger antibiotics
5. Breaking harmful bonds
6. EPA funds ground-breaking Lyme disease research
7. Breaking news: Study revives Olympic prospects for amputee sprinter
8. Shell-breaking crabs lived 20 million years earlier than thought
9. BGSU undergraduates to pilot groundbreaking genome project
10. Scientists discover record-breaking hydrogen storage materials for use in fuel cells
11. Speed plays crucial role in breaking proteins H-bonds
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... LONDON , April 26, 2016 ... a product subsidiary of Infosys (NYSE: ... to integrate the Onegini mobile security platform with ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration will ... to access and transact across channels. Using this ...
(Date:4/19/2016)... -- The new GEZE SecuLogic access control ... system solution for all door components. It can be ... interface with integration authorization management system, and thus fulfills ... dimensions of the access control and the optimum integration ... considerable freedom of design with regard to the doors. ...
(Date:4/15/2016)... DUBLIN , April 15, 2016 ... of the,  "Global Gait Biometrics Market 2016-2020,"  report ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait ... CAGR of 13.98% during the period 2016-2020. ... movement angles, which can be used to compute ...
Breaking Biology News(10 mins):
(Date:4/28/2016)... , April 28, 2016 ... reports the Company,s CEO  was featured in an ... Enter When VCs Fear To Tread: http://www.lifescienceleader.com/doc/accelerators-enter-when-vcs-fear-to-tread-0001 ... magazine is an essential business journal ... from emerging biotechs to Big Pharmas. Their content ...
(Date:4/27/2016)... ... 2016 , ... Cambridge Semantics, the leading provider of Smart Data ... has been named to The Silicon Review’s “20 Fastest Growing Big Data Companies of ... serves the needs of end users facing some of the most complex data challenges ...
(Date:4/27/2016)... RESEARCH TRIANGLE PARK, N.C. , April 27, 2016 ... announced today that Martine Rothblatt , Ph.D., Chairman ... an overview and update on the company,s business at ... Conference. The presentation will take place on ... and can be accessed via a live webcast on ...
(Date:4/27/2016)... MIAMI (PRWEB) , ... April 27, 2016 , ... ... joined the GSCG Advisory Board. Ross is the founder of GSCG affiliate Kimera Labs ... of Miami, where he studied hematopoietic stem cell transplantation for hematologic disorders and the ...
Breaking Biology Technology: