Navigation Links
Breaking deep-sea waves reveal mechanism for global ocean mixing
Date:9/9/2013

Waves breaking over sandy beaches are captured in countless tourist photos. But enormous waves breaking deep in the ocean are seldom seen, although they play a crucial role in long-term climate cycles.

A University of Washington study for the first time recorded such a wave breaking in a key bottleneck for circulation in the world's largest ocean. The study was published online this month in the journal Geophysical Research Letters.

The deep ocean is thought of as dark, cold and still. While this is mostly true, huge waves form between layers of water of different density. These skyscraper-tall waves transport heat, energy, carbon and nutrients around the globe. Where and how they break is important for the planet's climate.

"Climate models are really sensitive not only to how much turbulence there is in the deep ocean, but to where it is," said lead author Matthew Alford, an oceanographer in the UW Applied Physics Laboratory. He led the expedition to the Samoan Passage, a narrow channel in the South Pacific Ocean that funnels water flowing from Antarctica.

"The primary importance of understanding deep-ocean turbulence is to get the climate models right on long timescales," Alford said.

Dense water in Antarctica sinks to the deep Pacific, where it eventually surges through a 25-mile gap in the submarine landscape northeast of Samoa.

"Basically the entire South Pacific flow is blocked by this huge submarine ridge," Alford said. "The amount of water that's trying to get northward through this gap is just tremendous 6 million cubic meters of water per second, or about 35 Amazon Rivers."

In the 1990s a major expedition measured these currents through the Samoan Passage. The scientists inferred that a lot of mixing must also happen there, but couldn't measure it.

In the summer of 2012 the UW team embarked on a seven-week cruise to track the 800-foot-high waves that form atop the flow, 3 miles below the ocean's surface. Their measurements show these giant waves do break, producing mixing 1,000 to 10,000 times that of the surrounding slow-moving water.

"Oceanographers used to talk about the so-called 'dark mixing' problem, where they knew that there should be a certain amount of turbulence in the deep ocean, and yet every time they made a measurement they observed a tenth of that," Alford said. "We found there's loads and loads of turbulence in the Samoan Passage, and detailed measurements show it's due to breaking waves."

It turns out layers of water flowing over two consecutive ridges form a lee wave, like those in air that passes over mountains. These waves become unstable and turbulent, and break. Thus the deepest water, the densest in the world, mixes with upper layers and disappears.

This mixing helps explain why dense, cold water doesn't permanently pool at the bottom of the ocean and instead rises as part of a global conveyor-belt circulation pattern.

The Samoan Passage is important because it mixes so much water, but similar processes happen in other places, Alford said. Better knowledge of deep-ocean mixing could help simulate global currents and place instruments to track any changes.

On a lighter note: Could an intrepid surfer ride these killer deep-sea waves?

"It would be really boring," admitted Alford, who is a surfer. "The waves can take an hour to break, and I think most surfers are not going to wait that long for one wave."

In fact, even making the measurements was painstaking work. Instruments took 1.5 hours to lower to the seafloor, and the ship traveled at only a half knot, slower than a person walking, during the 30-hour casts. New technology let the scientists measure turbulence directly and make measurements from instruments lowered more than 3 miles off the side of the ship.

The researchers left instruments recording long-term measurements. The team will do another 40-day cruise in January to collect those instruments and map currents flowing through various gaps in the intricate channel.


'/>"/>

Contact: Hannah Hickey
hickeyh@uw.edu
206-543-2580
University of Washington
Source:Eurekalert

Related biology news :

1. Breaking up isnt hard to do -- the secret lives of corals on dark and stormy nights
2. Record-breaking grant: New research project to investigate the causes of mental disorders
3. Lawson recieves Grand Challenges Explorations grant for groundbreaking research
4. Groundbreaking discovery of the cellular origin of cervical cancer
5. Groundbreaking discovery of mechanism that controls obesity, atherosclerosis
6. UCLA Receives $46 Thousand Check for Groundbreaking Research on Debilitating Pregnancy Disease
7. Danish researchers release ground-breaking knowledge about calcium pumps in cells
8. Were in this together: A pathbreaking investigation into the evolution of cooperative behavior
9. Soft Robotics: A groundbreaking new journal on engineered soft devices that Interact with Living Systems
10. A*STAR scientists groundbreaking discovery of nucleus structure crucial to understanding diseases
11. MSU launches groundbreaking drug trial in Africa
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... , June 22, 2016  The American College of Medical ... Show Executive Magazine as one of the fastest-growing trade ... 25-27 at the Bellagio in Las Vegas ... highest percentage of growth in each of the following categories: ... companies and number of attendees. The 2015 ACMG Annual Meeting ...
(Date:6/21/2016)... , June 21, 2016 NuData Security announced ... new role of principal product architect and that ... director of customer development. Both will report directly ... officer. The moves reflect NuData,s strategic growth in ... to high customer demand and customer focus values. ...
(Date:6/15/2016)... , June 15, 2016 ... market report titled "Gesture Recognition Market by Application Market - Global ... 2016 - 2024". According to the report, the  global ... billion in 2015 and is estimated to grow ... 48.56 billion by 2024.  Increasing application ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 23, 2016 Apellis Pharmaceuticals, Inc. today ... trials of its complement C3 inhibitor, APL-2. The ... ascending dose studies designed to assess the safety, ... injection in healthy adult volunteers. Forty ... a single dose (ranging from 45 to 1,440mg) ...
(Date:6/23/2016)... On Wednesday, June 22, 2016, the ... the Dow Jones Industrial Average edged 0.27% lower to finish ... 0.17%. Stock-Callers.com has initiated coverage on the following equities: Infinity ... NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ... ). Learn more about these stocks by accessing their free ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... a new line of intelligent tools designed, tuned and optimized exclusively for Okuma ... 12–17 in Chicago. The result of a collaboration among several companies with expertise ...
(Date:6/22/2016)... Cell Applications, Inc. and StemoniX announced ... up to one billion human induced pluripotent stem ... These high-quality, consistent stem cells enable researchers to ... more time doing meaningful, relevant research. This achievement ... process that produces affordable, reliable HiPSC for life ...
Breaking Biology Technology: