Navigation Links
Brandeis wins $1 million Keck Foundation grant to research active matter
Date:1/7/2010

Waltham, MABrandeis University announced today a $1 million, three-year award from the W.M. Keck Foundation to help support experimental research into a new category of materials known as active matter. The project seeks to elucidate the behavior of active matter at length scales ranging from the microscopic to the macroscopic.

Unlike inert materials such as steel or plastic, active matter can move on its own, displaying properties previously observed only in living materials such as muscles and cells. The project will leverage the university's pioneering, interdisciplinary approach to research at the intersection of biology and physics. Last year, Brandeis joined an elite group of universities when it won a highly-competitive $7.8 million grant from the National Science Foundation to begin interdisciplinary research on active matter.

"Brandeis has been at the forefront of recent advances in materials science and biology, both in studying the properties of materials occurring in biological systems, and in understanding the role of material properties in the structure and function of cells and cellular components," said principal investigator Seth Fraden, an expert on colloidal liquid crystals and microfluidics.

Many biological systems display self-organized and distinctive dynamic states at the macroscalethink flocking birds, schooling fish, or swarming bacteria. Similarly, at the mesoscale, cellular motility, and at the microscale or sub-cellular level, cytoskeletal reorganization, represent distinctive dynamic states. All these systems are examples of active matter: they consume energy to generate movement, or stress, in space or time.

"In this project, we will exploit biology in order to make advances in active matter, which has become a frontier field in soft matter physics," said physicist Zvonimir Dogic, who uses optical microscopy to study self-assembly of biopolymers. "In return, our understanding of non-equilibrium phenomena and active materials will shed new light on a number of important biological structures that are not under direct genetic control, such as flagella beating."

Along with Dogic and Fraden, the research team includes biologist Daniela Nicastro, a leading authority on high-resolution electron tomography. The project uses two complimentary approaches towards studies of active matter. In a "top-down" approach the researchers will systematically deconstruct fully functioning biological organelles to determine the minimal set of components required for active behavior. In a complimentary "bottom-up" approach they will put well-defined isolated components together in a predefined structure and study how active behavior emerges from spontaneous interactions of the constituent molecules.

Historically, basic research on liquids, colloids, polymers and other soft materials has had spectacular consequences for technology, with liquid crystal displays being the prime example, said Fraden. "We believe that this research has great potential for technological development."


'/>"/>

Contact: Laura Gardner
gardner@brandeis.edu
781-736-4204
Brandeis University
Source:Eurekalert

Related biology news :

1. Corazonas Foods and Brandeis University partner to create cholesterol-reducing snacks
2. New research center at Brandeis to combine materials science and biology
3. Brandeis and Smart Balance team up to advance heart-healthy research
4. NIH grant will boost electron microscopy at Brandeis
5. Structure of 450 million year old protein reveals evolutions steps
6. First orchid fossil puts showy blooms at some 80 million years old
7. SyntheMed Completes $2.8 Million Equity Financing
8. Rutgers Genetics receives $7.8 million for autism research
9. Seattle Childrens Hospital leads $23.7 million NIH grant to study gene repair
10. UD leads $5.3-million research project on rice epigenetics
11. Rutgers high school outreach gets $3 million boost from NSF
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2016)... Republic , February 8, 2016 ... global payment platform which presents innovation for clients, ... Authentication feature called VoiceKey. --> Worldcore ... which presents innovation for clients, comfort and unbeatable ... VoiceKey. --> Worldcore is ...
(Date:2/4/2016)... The field of Human Microbiome research ... popular hubs of the biotechnology industry. While the ... of human microbiota, have garnered a lot of ... space has literally exploded in terms of both ... focuses on biomedical aspects of research, development, and ...
(Date:2/3/2016)... 3, 2016 --> ... report "Automated Fingerprint Identification System Market by Component (Hardware ... (Banking & Finance, Government, Healthcare, and Transportation) and Geography ... market is expected to be worth USD 8.49 Billion ... 2015 and 2020. The transformation and technology evolution from ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... ... , ... Global Stem Cells Group, a world ... Cells Network (GSCN) to distribute exosome injection and other biological products to stem ... Dominican Republic, Colombia, Argentina, Nicaragua, Panama, El Salvador, Venezuela, Peru, Ecuador, Paraguay, Puerto ...
(Date:2/10/2016)... Md. , Feb. 10, 2016  The Maryland ... Busch , has announced that University of Maryland School ... PhD, MBA and University of Maryland Medical System President ... of the "Speaker,s Medallion," the highest honor given to ... of Delegates. Dean Reece and Mr. ...
(Date:2/10/2016)... -- IsoRay, Inc. (NYSE MKT: ISR), a medical technology company ... for the treatment of prostate, brain, lung, head and ... for the second quarter and six months of fiscal ... --> --> Revenue was $1.19 ... ended December 31, 2015, a 12% increase compared to ...
(Date:2/10/2016)... ... 2016 , ... HOLLOWAY AMERICA, a leading custom stainless steel ... Chapter 21st Annual Vendor Exhibition on Thursday, February 18, 2016. The Rocky Mountain ... annual event, which will run from 3:00 p.m. - 8:30 p.m. at The ...
Breaking Biology Technology: