Navigation Links
Brandeis wins $1 million Keck Foundation grant to research active matter
Date:1/7/2010

Waltham, MABrandeis University announced today a $1 million, three-year award from the W.M. Keck Foundation to help support experimental research into a new category of materials known as active matter. The project seeks to elucidate the behavior of active matter at length scales ranging from the microscopic to the macroscopic.

Unlike inert materials such as steel or plastic, active matter can move on its own, displaying properties previously observed only in living materials such as muscles and cells. The project will leverage the university's pioneering, interdisciplinary approach to research at the intersection of biology and physics. Last year, Brandeis joined an elite group of universities when it won a highly-competitive $7.8 million grant from the National Science Foundation to begin interdisciplinary research on active matter.

"Brandeis has been at the forefront of recent advances in materials science and biology, both in studying the properties of materials occurring in biological systems, and in understanding the role of material properties in the structure and function of cells and cellular components," said principal investigator Seth Fraden, an expert on colloidal liquid crystals and microfluidics.

Many biological systems display self-organized and distinctive dynamic states at the macroscalethink flocking birds, schooling fish, or swarming bacteria. Similarly, at the mesoscale, cellular motility, and at the microscale or sub-cellular level, cytoskeletal reorganization, represent distinctive dynamic states. All these systems are examples of active matter: they consume energy to generate movement, or stress, in space or time.

"In this project, we will exploit biology in order to make advances in active matter, which has become a frontier field in soft matter physics," said physicist Zvonimir Dogic, who uses optical microscopy to study self-assembly of biopolymers. "In return, our understanding of non-equilibrium phenomena and active materials will shed new light on a number of important biological structures that are not under direct genetic control, such as flagella beating."

Along with Dogic and Fraden, the research team includes biologist Daniela Nicastro, a leading authority on high-resolution electron tomography. The project uses two complimentary approaches towards studies of active matter. In a "top-down" approach the researchers will systematically deconstruct fully functioning biological organelles to determine the minimal set of components required for active behavior. In a complimentary "bottom-up" approach they will put well-defined isolated components together in a predefined structure and study how active behavior emerges from spontaneous interactions of the constituent molecules.

Historically, basic research on liquids, colloids, polymers and other soft materials has had spectacular consequences for technology, with liquid crystal displays being the prime example, said Fraden. "We believe that this research has great potential for technological development."


'/>"/>

Contact: Laura Gardner
gardner@brandeis.edu
781-736-4204
Brandeis University
Source:Eurekalert

Related biology news :

1. Corazonas Foods and Brandeis University partner to create cholesterol-reducing snacks
2. New research center at Brandeis to combine materials science and biology
3. Brandeis and Smart Balance team up to advance heart-healthy research
4. NIH grant will boost electron microscopy at Brandeis
5. Structure of 450 million year old protein reveals evolutions steps
6. First orchid fossil puts showy blooms at some 80 million years old
7. SyntheMed Completes $2.8 Million Equity Financing
8. Rutgers Genetics receives $7.8 million for autism research
9. Seattle Childrens Hospital leads $23.7 million NIH grant to study gene repair
10. UD leads $5.3-million research project on rice epigenetics
11. Rutgers high school outreach gets $3 million boost from NSF
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/23/2017)... -- Hunova, the first robotic gym for the rehabilitation and functional motor sense ... Genoa, Italy . The first 30 robots will be available ... USA . The technology was developed and patented at the IIT ... Movendo Technology thanks to a 10 million euro investment from entrepreneur Sergio ... ...
(Date:4/24/2017)... , April 24, 2017 Janice ... partner with  Identity Strategy Partners, LLP (IdSP) , ... or without President Trump,s March 6, 2017 ... Entry , refugee vetting can be instilled with greater ... (Right now, all refugee applications are suspended by ...
(Date:4/13/2017)... April 13, 2017 UBM,s Advanced Design and ... will feature emerging and evolving technology through its 3D ... will run alongside the expo portion of the event ... and demonstrations focused on trending topics within 3D printing ... and manufacturing event will take place June 13-15, 2017 at ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... They call it the “hairy ... a depiction of a system of linkages and connections so complex and dense ... of computer science at Worcester Polytechnic Institute (WPI) and director of the university’s ...
(Date:10/12/2017)... ... October 12, 2017 , ... DuPont Pioneer and recently formed ... entered into a multiyear collaboration to identify and characterize novel CRISPR-Cas nucleases. The ... gene editing across all applications. , Under the terms of the agreement, Pioneer ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... with the addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s ... hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... genomics analysis platform specifically designed for life science researchers to analyze and ... researcher Rosalind Franklin, who made a major contribution to the discovery of ...
Breaking Biology Technology: