Navigation Links
Brandeis researchers use lasers, custom microscope to show gene splicing process in real time
Date:3/10/2011

From neurosurgery to bar code readers, lasers have been used in a myriad of applications since they were first introduced in the late 1950's. Now, with the work being done in Jeff Gelles' Lab at Brandeis University, researchers have developed a way to use lasers to study the splicing of pre-messenger RNA molecules, an essential process in creating proteins to sustain advanced organisms, including human life. This process of splicing is carried out by a cellular micro-machine called the spliceosome.

"Understanding how these micro-machines function inside the cell is important for many reasons," says Aaron A. Hoskins, a post-doctoral fellow who is a visiting scientist at Brandeis and first author of the paper "Ordered and Dynamic Assembly of Single Spliceosomes," which appears in the March 11, 2011 issue of Science.

"One is to further [decipher] basic biologywhat makes us humansand another is to understand how diseases related to these different machines come about," says Hoskins. By understanding how the process works, researchers may eventually be able to come up with therapies that fix the splicing process in cases where it is not working properly.

The paper reports on a five-year-long collaboration of three research laboratories with diverse expertise to study the splicing process. In addition to Hoskins, authors include: Gelles, the Aron and Imre Tauber professor of biochemistry and molecular pharmacology, whose lab developed the multi-laser imaging system used in the research; Larry Friedman a senior scientist in the biochemistry department who was a key contributor in building the elaborate microscope; Melissa J. Moore, a Howard Hughes Medical Institute Investigator and professor of biochemistry and molecular pharmacology at the University of Massachusetts Medical School and members of Virginia Cornish's laboratory in the Department of Chemistry at Columbia University whose lab synthesized the special dyes that were attached to the spliceosomal proteins so that the proteins could be viewed with the laser microscope.

"Genomic DNA is sort of like a zip file in that there's a lot of information occupying a very small space," explains Hoskins. "Splicing allows you to decompress the genetic information so the cell can read it before a particular protein is made."

There are certain regions that code for proteins, called exons, and regions that do not code for proteins, called introns. The regions that do not code for proteins often interrupt the regions that do, therefore they need to be removedand the remaining pieces must be spliced togetherto create appropriate proteins.

Friedman has spent more than five years developing specialized light microscopes to watch single protein molecules, while Hoskins has been developing the methodology to study these proteins in the complex environments necessary for spliceosome function.

To view the spliceosome in action -- how it assembles to actually do the splicingthe single yeast components are tagged with florescent dyes then the sample is placed into the microscope. The lasers act as a light source that causes individual tagged molecules to light up so one can actually watch, in unprecedented detail, the splicing process through its various stages.

"If we have one component of the spliceosome that has a green dye on it and one that has a red dye on it, then we see a green spot and a red spot coming together on the RNA, we know that we are studying part of that assembly process," says Gelles. "By looking at individual molecules one at a time we can actually follow the stages of the assembly process. We can determine whether it happens in the same order on each molecule, or if some spliceosomes assemble differently than others."

Friedman says that there are easily a hundred or so components that comprise the microscope that he designed and built with his colleagues. There are so many parts, in fact, that it is housed on a platform that looks much like a billiard table, with small tower-like structures and glass lenses scattered throughout.

"Some pieces were custom made and some are commercial off-the-shelf components that were purchased and put together like an erector set," says Freidman.

The molecular process known as the "central dogma of molecular biology" concerns the flow of information from DNA to RNA to proteins. RNA contains the chemical information that tells the cells what proteins to make -- for instance, muscle cells use the genes that tell the cell how to make the proteins that are important for muscle, and blood cells use the genes that tell the cell how to make proteins that are important for blood cells.

With the methods to study the splicesome now at their fingertips, the Gelles lab is also researching the process by which the RNA copy is made, called transcription, and processes by which cells change their shape and move.

"The thing that's very exciting about this technology is that it's generally applicable to study a wide range of biological problems," says Gelles. "It really enables us to find things out that were very difficult to study using previously existing approaches."


'/>"/>

Contact: Susan Chaityn Lebovits
lebovits@brandeis.edu
781-736-4027
Brandeis University
Source:Eurekalert  

Related biology news :

1. Brandeis study shows economic impact of dengue virus in Americas
2. Brandeis wins $1 million Keck Foundation grant to research active matter
3. NIH grant will boost electron microscopy at Brandeis
4. Brandeis and Smart Balance team up to advance heart-healthy research
5. Synthetic biology: TUM researchers develop novel kind of fluorescent protein
6. Researchers find drug that stops progression of Parkinsons disease in mice
7. Researchers discover new wintering grounds for humpback whales using sound
8. Berkeley Lab researchers illuminate laminins role in cancer formation
9. Researchers discover new shapes of microcompartments
10. Researchers find possible new treatment strategies for pancreatic cancer
11. Scripps oceanography researchers discover arctic blooms occurring earlier
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Brandeis researchers use lasers, custom microscope to show gene splicing process in real time
(Date:11/24/2016)... -- Cercacor today introduced Ember TM Sport Premium ... measure hemoglobin, Oxygen Content, Oxygen Saturation, Perfusion Index, ... approximately 30 seconds. Smaller than a smartphone, using only ... key data about their bodies to help monitor these ... Hemoglobin carries oxygen to muscles. When hemoglobin and ...
(Date:11/17/2016)... 17, 2016 Global Market Watch: Primarily ... Banks, Population-Based Banks and Academics) market is to witness a ... Biobanks shows the highest Compounded Annual Growth Rate (CAGR) of ... during the analysis period 2014-2020. North America ... followed by Europe at 9.56% respectively. ...
(Date:11/14/2016)... 14, 2016  xG Technology, Inc. ("xG" or the ... wireless communications for use in challenging operating environments, announced ... 2016. Management will hold a conference call to discuss ... Eastern Time (details below). Key Recent Accomplishments ... million binding agreement to acquire Vislink Communication Systems. The ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... 01, 2016 , ... ACEA Biosciences, Inc. announced today that it will be ... at the World Conference on Lung Cancer 2016, taking place in Vienna, Austria December ... clinical trials for AC0010 in patients with advanced non-small cell lung cancer harboring the ...
(Date:12/2/2016)... ... 2016 , ... DrugDev believes the only way to achieve real ... All three tenets were on display at the 2nd Annual DrugDev User Summit (hosted ... CRO and site organizations to discuss innovation and the future of clinical research. ...
(Date:12/2/2016)... PUNE, India , December 2, 2016 ... Billion by 2021, growing at a CAGR of 7.3% during the ... segment while hospitals and diagnostic laboratories segment accounted for the largest ... ... Complete report on global immunohistochemistry (IHC) market spread across 225 ...
(Date:11/30/2016)... 2016 /PRNewswire/ - Portage Biotech Inc. ("Portage" or "the ... excited to announce the formation of EyGen, Ltd. ... ophthalmology assets through proof of concept. EyGen,s lead ... Portage Pharmaceuticals Limited and being developed for topical ... anterior segment diseases. This agent has the potential ...
Breaking Biology Technology: