Navigation Links
Brain study may lead to improved epilepsy treatments
Date:4/14/2008

Using a rodent model of epilepsy, researchers found one of the bodys own neurotransmitters released during seizures, glutamate, turns on a signaling pathway in the brain that increases production of a protein that could reduce medication entry into the brain. Researchers say this may explain why approximately 30 percent of patients with epilepsy do not respond to antiepileptic medications. The study, conducted by researchers at the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health, and the University of Minnesota College of Pharmacy and Medical School, in collaboration with Heidrun Potschkas laboratory at Ludwig-Maximilians-University in Munich, Germany, is available online and will appear in the May 2008, issue of Molecular Pharmacology.

Our work identifies the mechanism by which seizures increase production of a drug transport protein in the blood brain barrier, known as P-glycoprotein, and suggests new therapeutic targets that could reduce resistance, said David Miller, Ph.D., a principal investigator in the NIEHS Laboratory of Pharmacology and co-author on the paper.

The blood-brain barrier (BBB), which resides in brain capillaries, is a limiting factor in treatment of many central nervous system disorders. It is altered in epilepsy so that it no longer permits free passage of administered antiepileptic drugs into the brain. Miller explained that P-glycoprotein forms a functional barrier in the BBB that protects the brain by limiting access of foreign chemicals.

The problem is that the protein does not distinguish well between neurotoxicants and therapeutic drugs, so it can often be an obstacle to the treatment of a number of diseases, including brain cancer, Miller said. Increased levels of P-glycoprotein in the BBB has been suggested as one probable cause of drug resistance in epilepsy.

Using isolated brain capillaries from mice and rats and an animal model of epilepsy, the researchers found that glutamate, a neurotransmitter released when neurons fire during seizures, turns on a signaling pathway that activates cyclooxygenase-2 (COX-2), causing increased synthesis of P-glycoprotein in these experiments. Increased transporter expression was abolished in COX-2 knockout mice or by COX-2 inhibitors. It has yet to be shown in animals or patients that targeting COX-2 will reduce seizure frequency or increase the effectiveness of anti-epileptic drugs.

"These findings provide insight into one mechanism that underlies drug resistance in epilepsy and possibly other central nervous system disorders," said Bjoern Bauer, Ph.D., lead author on the publication. "Targeting blood-brain barrier signals that increase P-glycoprotein expression rather than the transporter itself suggests a promising way to improve the effectiveness of drugs that are used to treat epilepsy, though more research is needed before new therapies can be developed.


'/>"/>

Contact: Robin Mackar
rmackar@niehs.nih.gov
919-541-0073
NIH/National Institute of Environmental Health Sciences
Source:Eurekalert

Related biology news :

1. Invasion of the brain tumors
2. HIV is a double hit to the brain
3. AIDS interferes with stem cells in the brain
4. 60 second test could help early diagnosis of common brain diseases
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Influence of sex and handedness on brain is similar in capuchin monkeys and humans
8. Inside the brain of a crayfish
9. Specific brain protein required for nerve cell connections to form and function
10. Brains timing linked with timescales of the natural visual world
11. Adult brain can change, study confirms
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/15/2016)... 15, 2016 Yissum Research Development Company ... company of the Hebrew University, announced today the formation ... technology of various human biological indicators. Neteera Technologies has ... from private investors. ... detection of electromagnetic emissions from sweat ducts, enables reliable ...
(Date:3/14/2016)... , Allemagne, March 14, 2016 ... http://www.apimages.com ) - --> - Renvoi : ... - --> --> ... solutions biométriques, fournit de nouveaux lecteurs d,empreintes digitales ... LF10 de DERMALOG sera utilisé pour produire des ...
(Date:3/11/2016)... PUNE, India , March 11, 2016 ... to a new market research report "Image Recognition Market ... by Application (Marketing and Advertising), by Deployment Type (On-Premises ... Global Forecast To 2022", published by MarketsandMarkets, the global ... in 2015 to USD 29.98 Billion by 2020, at ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... San Diego, CA (PRWEB) , ... April 29, 2016 , ... ... Cell Foundation (NSCF) to support the development of a patient-specific stem cell therapy for ... Bratt-Leal in the lab of Dr. Jeanne Loring at The Scripps Research Institute in ...
(Date:4/28/2016)... PUNE, India , April 28, 2016 ... PT, JT, Stirling, and Brayton Cryocoolers), Service (Technical Support, ... Application, and Geography - Global Forecast to 2022", published ... to USD 2.94 Billion by 2022, at a CAGR ... Browse 70 market data Tables and 94 Figures spread ...
(Date:4/28/2016)... ... April 28, 2016 , ... Next week on May 5 ... first-in-class technologies for tissue stem cell counting and expansion to gene-editing scientists and ... & CRISPR-based Genome Engineering in Burlington, Massachusetts. , The attention of most gene-editing ...
(Date:4/27/2016)... Boston (PRWEB) , ... April 27, 2016 , ... ... driven by semantic web technology, today announced that it has been named to The ... life sciences, financial services and other markets, Cambridge Semantics serves the needs of end ...
Breaking Biology Technology: