Navigation Links
Brain-imaging differences evident at 6 months in infants who develop autism
Date:2/16/2012

CHAPEL HILL, N.C. A new study led by the University of North Carolina at Chapel Hill found significant differences in brain development starting at age 6 months in high-risk infants who later develop autism, compared to high-risk infants who did not develop autism.

"It's a promising finding," said Jason J. Wolff, PhD, lead author of the study and a postdoctoral fellow at UNC's Carolina Institute for Developmental Disabilities (CIDD). "At this point, it's a preliminary albeit great first step towards thinking about developing a biomarker for risk in advance of our current ability to diagnose autism."

The study also suggests, Wolff said, that autism does not appear suddenly in young children, but instead develops over time during infancy. This raises the possibility "that we may be able to interrupt that process with targeted intervention," he said.

Joseph Piven, MD, director of the CIDD, is senior author of the study.

The study was published online on Friday, Feb. 17 at AJP in Advance, a section of the website of the American Journal of Psychiatry. Its results are the latest from the ongoing Infant Brain Imaging Study (IBIS) Network, which is funded by the National Institutes of Health and headquartered at UNC. Piven received an NIH Autism Centers of Excellence (ACE) program network award for the IBIS Network in 2007. ACE networks consist of researchers at many facilities in locations throughout the country, all of whom work together on a single research question.

Participants in the study were 92 infants who all have older siblings with autism and thus are considered to be at high risk for autism themselves. All had diffusion tensor imaging which is a type of magnetic resonance imaging (MRI) at 6 months and behavioral assessments at 24 months. Most also had additional brain imaging scans at either or both 12 and 24 months.

At 24 months, 28 infants (30 percent) met criteria for autism spectrum disorders while 64 infants (70 percent) did not. The two groups differed in white matter fiber tract development pathways that connect brain regions as measured by fractional anisotropy (FA). FA measures white matter organization and development, based on the movement of water molecules through brain tissue.

This study examined 15 separate fiber tracts, and found significant differences in FA trajectories in 12 of the 15 tracts between infants who did develop autism versus infants who did not. Infants who later developed autism had elevated FA at six months but then experienced slower change over time. By 24 months of age, infants with autism had lower FA values than infants without autism.

"This evidence, which implicates multiple fiber pathways, suggests that autism is a whole-brain phenomenon not isolated to any particular brain region," Wolff said.


'/>"/>

Contact: Tom Hughes
tahughes@unch.unc.edu
919-966-6047
University of North Carolina School of Medicine
Source:Eurekalert  

Related biology news :

1. Researchers note differences between people and animals on calorie restriction
2. Study sheds light on genetic differences that cause a childhood eye disease
3. Study identifies genetic variants giving rise to differences in metabolism
4. Genetic differences between yeasts greater than those between humans and chimpanzees
5. Differences in neighborhood food environment may contribute to disparities in obesity
6. Differences among exercisers and nonexercisers during pregnancy
7. Differences among exercisers and nonexercisers during pregnancy
8. Risk of vibration-induced vascular injuries linked to vibration frequency differences
9. Tiny differences in our genes help shed light on the big picture of human history
10. Geography and history shape genetic differences in humans
11. Scientists demonstrate importance of niche differences in biodiversity
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Brain-imaging differences evident at 6 months in infants who develop autism
(Date:11/29/2016)... , November 29, 2016 Nearly one billion matches ... Reading ... DERMALOG ... of an efficient Identity Management. (PRNewsFoto/DERMALOG Identification Systems) ... DERMALOG is Germany's largest Multi-Biometric supplier: The company's ...
(Date:11/22/2016)... Nov. 22, 2016   MedNet Solutions , an ... spectrum of clinical research, is pleased to announce that ... Healthcare and Life Sciences Awards as "Most Outstanding ... an unprecedented year of recognition and growth for MedNet, ... 15 years. iMedNet ™ , ...
(Date:11/17/2016)... Nov. 17, 2016  AIC announces that it has just released a new white ... require high-performance scale-out plus high speed data transfer storage solutions. Photo - ... ... ... Setting up a high performance computing or ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 02, 2016 , ... The ... to collaboratively developing improved chemistry, manufacturing and control technologies for the pharmaceutical ... with robust, probe-based sampling. , Online liquid chromatography analysis is becoming ...
(Date:12/2/2016)... PUNE, India , December 2, 2016 ... Billion by 2021, growing at a CAGR of 7.3% during the ... segment while hospitals and diagnostic laboratories segment accounted for the largest ... ... Complete report on global immunohistochemistry (IHC) market spread across 225 ...
(Date:11/30/2016)... -- GenomOncology today announced the appointment of Joshua F. Coleman ... Dr. Coleman will oversee clinical content development and curation ... GenomOncology software suite empowers molecular pathologists with a seamless workflow ... support, from quality control through reporting. ... , , ...
(Date:11/30/2016)... 30, 2016 Biotest Pharmaceuticals Corporation (BPC), a ... announce the addition of its newest plasma collection center ... . The 15,200 square foot state-of-the-art facility officially ... and brings the total number of BPC,s plasma collection ... , BPC,s Chief Executive Officer said "We are pleased ...
Breaking Biology Technology: