Navigation Links
Brain-imaging differences evident at 6 months in infants who develop autism

CHAPEL HILL, N.C. A new study led by the University of North Carolina at Chapel Hill found significant differences in brain development starting at age 6 months in high-risk infants who later develop autism, compared to high-risk infants who did not develop autism.

"It's a promising finding," said Jason J. Wolff, PhD, lead author of the study and a postdoctoral fellow at UNC's Carolina Institute for Developmental Disabilities (CIDD). "At this point, it's a preliminary albeit great first step towards thinking about developing a biomarker for risk in advance of our current ability to diagnose autism."

The study also suggests, Wolff said, that autism does not appear suddenly in young children, but instead develops over time during infancy. This raises the possibility "that we may be able to interrupt that process with targeted intervention," he said.

Joseph Piven, MD, director of the CIDD, is senior author of the study.

The study was published online on Friday, Feb. 17 at AJP in Advance, a section of the website of the American Journal of Psychiatry. Its results are the latest from the ongoing Infant Brain Imaging Study (IBIS) Network, which is funded by the National Institutes of Health and headquartered at UNC. Piven received an NIH Autism Centers of Excellence (ACE) program network award for the IBIS Network in 2007. ACE networks consist of researchers at many facilities in locations throughout the country, all of whom work together on a single research question.

Participants in the study were 92 infants who all have older siblings with autism and thus are considered to be at high risk for autism themselves. All had diffusion tensor imaging which is a type of magnetic resonance imaging (MRI) at 6 months and behavioral assessments at 24 months. Most also had additional brain imaging scans at either or both 12 and 24 months.

At 24 months, 28 infants (30 percent) met criteria for autism spectrum disorders while 64 infants (70 percent) did not. The two groups differed in white matter fiber tract development pathways that connect brain regions as measured by fractional anisotropy (FA). FA measures white matter organization and development, based on the movement of water molecules through brain tissue.

This study examined 15 separate fiber tracts, and found significant differences in FA trajectories in 12 of the 15 tracts between infants who did develop autism versus infants who did not. Infants who later developed autism had elevated FA at six months but then experienced slower change over time. By 24 months of age, infants with autism had lower FA values than infants without autism.

"This evidence, which implicates multiple fiber pathways, suggests that autism is a whole-brain phenomenon not isolated to any particular brain region," Wolff said.


Contact: Tom Hughes
University of North Carolina School of Medicine

Related biology news :

1. Researchers note differences between people and animals on calorie restriction
2. Study sheds light on genetic differences that cause a childhood eye disease
3. Study identifies genetic variants giving rise to differences in metabolism
4. Genetic differences between yeasts greater than those between humans and chimpanzees
5. Differences in neighborhood food environment may contribute to disparities in obesity
6. Differences among exercisers and nonexercisers during pregnancy
7. Differences among exercisers and nonexercisers during pregnancy
8. Risk of vibration-induced vascular injuries linked to vibration frequency differences
9. Tiny differences in our genes help shed light on the big picture of human history
10. Geography and history shape genetic differences in humans
11. Scientists demonstrate importance of niche differences in biodiversity
Post Your Comments:
Related Image:
Brain-imaging differences evident at 6 months in infants who develop autism
(Date:11/17/2015)... -- Vigilant Solutions announces today that Mr. Dick W. ... --> --> Mr. Boyce ... at TPG Capital, one of the largest global investment ... revenue.  He founded and led TPG,s Operating Group, which ... 1997 to 2013.  In his first role, he served ...
(Date:11/12/2015)... , Nov. 12, 2015  A golden retriever that ... muscular dystrophy (DMD) has provided a new lead for ... Hospital, the Broad Institute of MIT and Harvard and ... . Cell, pinpoints a ... "escape" the disease,s effects. The Boston Children,s lab of ...
(Date:11/11/2015)... --  MedNet Solutions , an innovative SaaS-based eClinical technology company ... to announce that it will be a Sponsor of the ... be held November 17-19 in Hamburg , ... iMedNet , MedNet,s easy-to-use, proven and affordable ... been able to deliver time and cost savings of up ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... Halozyme Therapeutics, Inc. (NASDAQ: HALO ) will be ... York on Wednesday, December 2 at 9:30 a.m. ET/6:30 ... CEO, will provide a corporate overview. th Annual ... 1:00 p.m. ET/10:00 a.m. PT . Jim Mazzola , ... corporate overview. --> th Annual Oppenheimer Healthcare Conference ...
(Date:11/24/2015)... 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: ... behalf of the Toronto Stock Exchange, confirms that as ... no corporate developments that would cause the recent movements ... --> About Aeterna Zentaris Inc. ... --> Aeterna Zentaris is a specialty biopharmaceutical company ...
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model Aeronautics (AMA), led by ... known as Multirotor Grand Prix, to represent the First–Person View (FPV) racing community. , ... have embraced this type of racing and several new model aviation pilots have joined ...
(Date:11/24/2015)... 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... the remaining 11,000 post-share consolidation (or 1,100,000 pre-share ... "Series B Warrants") subject to the previously disclosed ... 23, 2015, which will result in the issuance ... to the issuance of such shares, there will ...
Breaking Biology Technology: