Navigation Links
Boston College profs study oxidative stress subcellular to discover its role in diseases
Date:9/14/2007

CHESTNUT HILL, MA (9-14-07) Oxidative stress is known to underlie many human diseases including atherosclerosis, Parkinson's disease and Alzheimer's disease. A team of scientists from Boston College has found a means to discover more about what role oxidative stress plays in the development of diseases by studying it at the sub-cellular level.

Available information about the oxidative stress response has come primarily from studies using reactive oxygen species (ROS) with ill-defined locations within the cell, according to the researchers. Thus, they say, existing models do not account for possible differences between stress originating within particular regions of the cell.

Through the use of novel synthetic intracellular targeting molecules that contain oxygen species-generating compounds that cause oxidative stress, the Boston College researchers have targeted specific locations within the cell notably the nucleus and mitochondrion and observed how these molecules interact with nucleic acids (DNA). This will make it easier to determine what parts of a cell are most likely to combat the effects of oxidative stress, and which are weaker, according to the researchers.

That knowledge, in turn, could someday lead to the development of toxic agents that could be used, for example, to attack cancer at the sub-cellular level.

The research, published in the most recent issue of the journal Chemistry & Biology, demonstrates the value of interdepartmental and interdisciplinary collaborations, say the investigators, a trend which is becoming a hallmark of Boston College's natural science programs.

"This experience is an illustration of what can happen when you have an environment where chemists and biologists continually encounter each other, formally and informally. Conversations start, ideas are exchanged and progress is made rapidly; these historically separate disciplines can get together to share observations and work together," said Boston College Professor of Biology Thomas Chiles, a study co-author whose lab was involved in the research.

Chiles says the collaboration began a few years ago when he and Professor Shana Kelley then a faculty member in the Boston College Chemistry Department now at the University of Toronto were serving on a committee together. She described her research to Chiles, and the two scientists began exchanging ideas and sharing lab resources and staff to work on the project.

Kelley had designed highly innovative chemical probes to target specific locations within the cell, Chiles explains. "Once inside, she knew the compounds were killing the cell, but she needed another perspective, because she was dealing with questions of a biological nature. How were these compounds killing the cell" How does a cell survive oxidative stress"

"Past research on oxidative stress focused on the cell as a whole, so it was difficult to ascertain exactly what was happening at the molecular level. But with these compounds developed through Shana's lab, we can begin to understand the specifics of the cell's response to oxidative stress.

"The next step is to look at whether the changes occurring within the cell are its response to the oxidative stress caused by the compounds, or if the compounds themselves are triggering the changes."


'/>"/>

Contact: Kathleen Sullivan
kathleen.sullivan.1@bc.edu
617-552-8644
Boston College
Source:Eurekalert

Related biology news :

1. Boston University biomedical engineers win major grant for pursuit of the $1,000 Genome
2. Genpathway and Baylor College of Medicine Identify New Genes in Breast Cancer
3. Researcher at UGA College of Veterinary Medicine identifies new way of combating viral diseases
4. Smooth sailing: cruise ship virus tackled by UH, Baylor College of Medicine
5. Williams College biologist explores photosynthetic apparatus
6. College students who pull all-nighters and get no sleep more likely to have a lower GPA
7. Bioartificial kidney under study at MCG
8. Novel Asthma Study Shows Multiple Genetic Input Required; Single-gene Solution Shot Down
9. W.M. Keck Foundation funds study of friendly microbes
10. Yellowstone microbes fueled by hydrogen, according to U. of Colorado study
11. Emory Study Tests Bone Marrow Stem Cells to Improve Circulation in Legs
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/2/2016)... 2, 2016 Checkpoint Inhibitors for Cancer ... Are you interested in the future of ... checkpoint inhibitors. Visiongain,s report gives those predictions to ... national level. Avoid falling behind in data ... and revenues those emerging cancer therapies can achieve. ...
(Date:2/1/2016)... , February 1, 2016 ... advancements to drive global touchfree intuitive gesture control market ... --> Rising sales of consumer electronics coupled with ... control market size through 2020 ... electronics coupled with new technological advancements to drive global ...
(Date:1/27/2016)... Ohio , Jan. 27, 2016  Rite Track, ... based in West Chester, Ohio ... award winning service staff, based in Austin, ... capacity and ability to provide modifications, installations and technical ... Dovalina , CEO of PLUS, commented, "PLUS has provided ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... Inc. (NYSE: BIOA ), a leader in renewable ... Ltd., its partner in the Sarnia ... CDN$25 million in the joint venture for 10% of ...  Mitsui will also play a stronger role in the ... , providing dedicated resources alongside BioAmber,s commercial team. ...
(Date:2/10/2016)... New York, New York (PRWEB) , ... ... ... Regeneron Pharmaceuticals Inc. (NASDAQ: REGN) today announced that it has joined the ... vaccines and immunotherapies for infectious diseases and cancer. , The Human ...
(Date:2/10/2016)... MO (PRWEB) , ... February 10, 2016 , ... ... will attend the International Society of Pharmaceutical Engineering (ISPE) Rocky Mountain Chapter 21st ... ISPE is expecting to fill more than 100 tables for its annual event, ...
(Date:2/10/2016)... ... February 10, 2016 , ... Global Stem Cells ... with Singapore-based Global Stem Cells Network (GSCN) and its affiliate Global Medical ... the latest adipose and bone marrow therapies. , Through the new collaboration, ...
Breaking Biology Technology: