Navigation Links
Boron-based compounds trick a biomedical protein
Date:9/2/2009

Chemists and biologists have successfully demonstrated that specially synthesized boron compounds are readily accepted in biologically active enzymes, a move that, they say, is a proof of concept that could lead to new drug design strategies.

In June 2008, University of Oregon chemist Shih-Yuan Liu reported in the Journal of the American Chemical Society his lab's synthesis of boron-nitrogen compounds with electronic and structural similarities to fundamentally important benzene molecules. That synthesis suggested a new tool for possible use in biomedical research as well as in materials science.

What Liu's lab created were benzene surrogates known as 1,2-dihydro-1,2-azaborines that possess electron-delocalized structures consistent with aromaticity -- a core concept in chemistry where rings of atoms exhibit unexpected stability.

Now, in the Sept. 1 issue of Angewandte Chemie, a weekly journal of the German Chemical Society, Liu and colleagues show that their synthesized compounds indeed are accepted in non-polarized hydrophobic pockets of a well-studied enzyme, a member of the lysozyme family discovered by Alexander Fleming in 1921 and used widely in biomedical research.

The "proof of concept" was completed in the Institute of Molecular Biology lab of the UO physicist Brian W. Matthews, where Liu's synthesized compound was treated with T4 lysozymes, crystallized and examined with high-resolution X-ray crystallography.

"I feel this is a fairly big step forward," Liu said. "Our compounds bind efficiently to the T4 lysozyme and behave as hydrophobic arene molecules similar to natural systems. Our compound actually has polar features, so it was questionable that it would bind to the enzyme's hydrophobic pocket, but it did and very similarly to the way carbon molecules would bind."

In essence, Liu and colleagues have potentially put boron, a commonly occurring essential nutrient in plants -- but seemingly "bypassed by nature in evolution" of other living things, Liu said -- into play as an alternative to carbon in manufacturing target-specific pharmaceuticals. The use of boron in the biomedical field is not new but its acceptance has been hampered by instability, but interest has risen in the last decade, Liu said.

An analysis of boron's medical potential appeared in the February issue of EMBO Reports. Boron is being studied by a number of drug manufacturers. It currently is used as an antibacterial drug component and as part of a therapy for multiple myeloma. The advance by Liu's lab strengthens the case that boron-based molecules can be used as new pharmacophores, or as markers of drugs in living tissue, and to improve long-stymied attempts to develop boron-neutron capture therapies to produce inhibiting agents for cancer treatment.

"This research provides the first experimental evidence that enzymes in our bodies cannot distinguish between our artificial compound versus the all-carbon systems," Liu said. "We can trick the enzymes to believing they are accepting the real thing."


'/>"/>

Contact: Jim Barlow
jebarlow@uoregon.edu
541-346-3481
University of Oregon
Source:Eurekalert  

Related biology news :

1. Natural compounds, chemotherapeutic drugs may become partners in cancer therapy
2. MSU discoveries upend traditional thinking about how plants make certain compounds
3. Compounds could be new class of cancer drugs
4. Grape-seed extract kills laboratory leukemia cells, proving value of natural compounds
5. 2 new compounds show promise for eliminating breast cancer tumors
6. Two new compounds show promise for eliminating breast cancer tumors
7. Scripps research scientists identify compounds for stem-cell production from adult cells
8. 3-substituted indolones as novel therapeutic compounds for neurodegenerative conditions
9. New $11 million center to speed production of new compounds for drug discovery
10. Discovery of natural compounds that could slow blood vessel growth
11. Duke team finds compounds that prevent nerve damage
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Boron-based compounds trick a biomedical protein
(Date:3/21/2016)... WAKEFIELD, Massachusetts , March 22, 2016 ... and facial recognition with passcodes for superior security ... MESG ), a leading provider of secure digital communications ... pilot their biometric technology and offer enterprise customers, particularly ... provide secure facial recognition and voice authentication within a ...
(Date:3/17/2016)... 17, 2016 ABI Research, the leader ... global biometrics market will reach more than $30 ... from 2015. Consumer electronics, particularly smartphones, continue to ... anticipated to reach two billion shipments by 2021 ... Pavlakis , Research Analyst at ABI Research. "Surveillance ...
(Date:3/15/2016)... 15, 2016 Yissum Research Development Company ... company of the Hebrew University, announced today the formation ... technology of various human biological indicators. Neteera Technologies has ... from private investors. ... detection of electromagnetic emissions from sweat ducts, enables reliable ...
Breaking Biology News(10 mins):
(Date:5/3/2016)... , ... May 03, 2016 , ... ... at Boston CEO 2016 on May 31st and June 1st at The Four ... for leading executives in the life sciences, offering exclusive access to key decision ...
(Date:5/3/2016)... ... May 03, 2016 , ... Kerafast Inc., developers of an ... across the globe, today announced the availability of a Zika virus antibody from ... treatment and prevention measures for the Zika virus, the virus’s geographical distribution continues ...
(Date:5/3/2016)... LONDON , May 3, 2016 ... Report Assessing Developers and Producers of Those Competitor Biologics  ... Guide to Companies, Activities and Prospects ,  ... drug companies? And what are their sales potentials? ... There you see results, trends, opportunities and revenue forecasting. ...
(Date:5/3/2016)... ... May 03, 2016 , ... According to world renowned ... definitive prostate cancer treatment, patients traditionally had two main treatment options: surgery or radiation. ... be made. , New technology has enabled doctors to administer higher doses of ...
Breaking Biology Technology: