Navigation Links
Boron-based compounds trick a biomedical protein
Date:9/2/2009

Chemists and biologists have successfully demonstrated that specially synthesized boron compounds are readily accepted in biologically active enzymes, a move that, they say, is a proof of concept that could lead to new drug design strategies.

In June 2008, University of Oregon chemist Shih-Yuan Liu reported in the Journal of the American Chemical Society his lab's synthesis of boron-nitrogen compounds with electronic and structural similarities to fundamentally important benzene molecules. That synthesis suggested a new tool for possible use in biomedical research as well as in materials science.

What Liu's lab created were benzene surrogates known as 1,2-dihydro-1,2-azaborines that possess electron-delocalized structures consistent with aromaticity -- a core concept in chemistry where rings of atoms exhibit unexpected stability.

Now, in the Sept. 1 issue of Angewandte Chemie, a weekly journal of the German Chemical Society, Liu and colleagues show that their synthesized compounds indeed are accepted in non-polarized hydrophobic pockets of a well-studied enzyme, a member of the lysozyme family discovered by Alexander Fleming in 1921 and used widely in biomedical research.

The "proof of concept" was completed in the Institute of Molecular Biology lab of the UO physicist Brian W. Matthews, where Liu's synthesized compound was treated with T4 lysozymes, crystallized and examined with high-resolution X-ray crystallography.

"I feel this is a fairly big step forward," Liu said. "Our compounds bind efficiently to the T4 lysozyme and behave as hydrophobic arene molecules similar to natural systems. Our compound actually has polar features, so it was questionable that it would bind to the enzyme's hydrophobic pocket, but it did and very similarly to the way carbon molecules would bind."

In essence, Liu and colleagues have potentially put boron, a commonly occurring essential nutrient in plants -- but seemingly "bypassed by nature in evolution" of other living things, Liu said -- into play as an alternative to carbon in manufacturing target-specific pharmaceuticals. The use of boron in the biomedical field is not new but its acceptance has been hampered by instability, but interest has risen in the last decade, Liu said.

An analysis of boron's medical potential appeared in the February issue of EMBO Reports. Boron is being studied by a number of drug manufacturers. It currently is used as an antibacterial drug component and as part of a therapy for multiple myeloma. The advance by Liu's lab strengthens the case that boron-based molecules can be used as new pharmacophores, or as markers of drugs in living tissue, and to improve long-stymied attempts to develop boron-neutron capture therapies to produce inhibiting agents for cancer treatment.

"This research provides the first experimental evidence that enzymes in our bodies cannot distinguish between our artificial compound versus the all-carbon systems," Liu said. "We can trick the enzymes to believing they are accepting the real thing."


'/>"/>

Contact: Jim Barlow
jebarlow@uoregon.edu
541-346-3481
University of Oregon
Source:Eurekalert  

Related biology news :

1. Natural compounds, chemotherapeutic drugs may become partners in cancer therapy
2. MSU discoveries upend traditional thinking about how plants make certain compounds
3. Compounds could be new class of cancer drugs
4. Grape-seed extract kills laboratory leukemia cells, proving value of natural compounds
5. 2 new compounds show promise for eliminating breast cancer tumors
6. Two new compounds show promise for eliminating breast cancer tumors
7. Scripps research scientists identify compounds for stem-cell production from adult cells
8. 3-substituted indolones as novel therapeutic compounds for neurodegenerative conditions
9. New $11 million center to speed production of new compounds for drug discovery
10. Discovery of natural compounds that could slow blood vessel growth
11. Duke team finds compounds that prevent nerve damage
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Boron-based compounds trick a biomedical protein
(Date:4/19/2017)... 2017 The global military biometrics ... marked by the presence of several large global players. ... five major players - 3M Cogent, NEC Corporation, M2SYS ... nearly 61% of the global military biometric market in ... global military biometrics market boast global presence, which has ...
(Date:4/13/2017)... , April 13, 2017 UBM,s Advanced Design ... will feature emerging and evolving technology through its ... Summits will run alongside the expo portion of the ... panels and demonstrations focused on trending topics within 3D ... design and manufacturing event will take place June 13-15, 2017 ...
(Date:4/11/2017)... 11, 2017 Research and Markets has announced ... report to their offering. ... global eye tracking market to grow at a CAGR of 30.37% ... Tracking Market 2017-2021, has been prepared based on an in-depth market ... landscape and its growth prospects over the coming years. The report ...
Breaking Biology News(10 mins):
(Date:5/24/2017)... ... May 24, 2017 , ... ... as treasurer for the Mid-Atlantic chapter of the Healthcare Businesswomen’s Association ... , The HBA Mid-Atlantic chapter board meets in person once each quarter and ...
(Date:5/24/2017)... ... May 24, 2017 , ... ... increasingly being developed with Wi-Fi connectivity to reduce the amount of wiring in ... room. In addition, compact mobile devices including infusion pumps, heart and hypertension monitoring, ...
(Date:5/23/2017)... ... May 23, 2017 , ... ... cells for research and the development of cardiac regeneration therapies. The development ... numbers of cardiomyocytes (hPSC-CMs). Due to varying differentiation efficiencies, further enrichment of ...
(Date:5/23/2017)... ... , ... Vortex Biosciences , provider of circulating tumor cell (CTC) capture ... using Vortex microfluidic technology ” in Nature Precision Oncology on May 8th. The ... and Dr. Matthew Rettig at the University of California, Los Angeles. The publication describes ...
Breaking Biology Technology: