Navigation Links
Bloodless worm sheds light on human blood, iron deficiency
Date:4/16/2008

Using a lowly bloodless worm, University of Maryland researchers have discovered an important clue to how iron carried in human blood is absorbed and transported into the body. The finding could lead to developing new ways to reduce iron deficiency, the worlds number one nutritional disorder.

With C. elegans, a common microscopic worm that lives in dirt, Iqbal Hamza, assistant professor of animal and avian sciences, and his team identified previously unknown proteins that are key to transporting heme, the molecule that creates hemoglobin in blood and carries iron. It is a critical step in understanding how our bodies process iron. Their findings are published in the April 16 issue of Nature online.

The structure of hemoglobin has been crystallized over and over, says Hamza, but no one knows how the heme gets into the globin, or how humans absorb iron, which is mostly in the form of heme.

To understand the underlying issues of nutritional and genetic causes of iron deficiency, we are looking at the molecules and mechanisms involved in heme absorption. Once you understand transport of heme, you can more effectively deliver it to better absorb iron in the human intestine.

Heme and Blood

Heme is a critical molecule for health in all eukaryotes, organisms whose cells are organized into complex structures enclosed in membranes. Species of eukaryotes range from humans to bakers yeast. Heme makes blood red and binds to oxygen and other gases we need to survive.

Heme is created in the mitochondria, then moves through pathways that connect other cells, where it is synthesized to form blood. Heme on its own, however, is toxic.

We wanted to find out how heme gets carried between and within cells, said Hamza.

A Bloodless Worm

Eight steps are required to generate heme, making it a difficult process to control in the study of heme transport pathways, as Hamza learned when he first studied the question in bacteria and mice.

So Hamza did the non-intuitive thing. He chose a test subject that doesnt make heme, but needs it to survive, that doesnt even have blood, but shares a number of genes with humans the C. elegans roundworm, a simple nematode.

We tried to understand how blood is formed in an animal that doesnt have blood, that doesnt turn red, but has globin, Hamza said.

C. elegans gets heme by eating bacteria in the soil where it lives. C. elegans consumes heme and transports it into the intestine. So now you have a master valve to control how much heme the animal sees and digests via its food, Hamza explains.

C. elegans has several other benefits for studying heme transport. Hamzas team could control the amount of heme the worms were eating. With only one valve controlling the heme transport, the scientists knew exactly where heme was entering the worms intestine, where, as in humans, it is absorbed.

And C. elegans is transparent, so that under the microscope researchers could see the movement of the heme ingested by the worm.

Genes and Iron Deficiency

The study revealed several findings that could lead to new treatment for iron deficiency. One was the discovery that genes are involved in heme transport. Hamzas group found that HRG-1 genes, which are common to humans and C. elegans, were important regulators of heme transport in the worm.

To test their findings in an animal that makes blood, Hamzas team removed the HRG-1 gene in zebrafish. The fish developed bone and brain defects, much like birth defects. The gene removal also resulted in a severe form of anemia usually caused by iron deficiencies.

When they substituted the zebrafish gene with the worm HRG-1 gene, the mutant fish returned to normal, indicating that the fish and worm genes are interchangeable, irrespective of the animals ability to make blood.

They also found that too little or too much heme can kill C. elegans, a result that could help researchers find ways to treat people who suffer from iron deficiency caused by parasitic worms.

More than two billion people are infected with parasites, says Hamza. Hookworms eat a huge amount of hemoglobin and heme in their hosts. If we can simultaneously understand heme transport pathways in humans and worms, we can exploit heme transport genes to deliver drugs disguised as heme to selectively kill parasites but not harm the host.


'/>"/>

Contact: Ellen Ternes
eternes@umd.edu
301-405-4627
University of Maryland
Source:Eurekalert

Related biology news :

1. Journey to the center of the earth: Discovery sheds light on mantle formation
2. New radar satellite technique sheds light on ocean current dynamics
3. 480-million-year-old fossil sheds light on 150-year-old paleontological mystery
4. Research sheds light on the mechanics of gene transcription
5. Shilatifard Lab sheds light on molecular machinery required for translation of histone crosstalk
6. Massive dinosaur discovered in Antarctica sheds light on life, distribution of sauropodomorphs
7. Research sheds new light on how diseases jump across species
8. New study sheds light on Galápagos hawk evolutionary history
9. CU-Boulder worm study sheds light on human aging, inherited diseases
10. UT researcher sheds new light on hybrid animals
11. New research sheds light on Hobbit
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/9/2016)... , UAE, May 9, 2016 ... when it comes to expanding freedom for high net ... Even in today,s globally connected world, there is ... conferencing system could ever duplicate sealing your deal with ... obtaining second passports by taking advantage of citizenship via ...
(Date:4/26/2016)... BANGALORE, India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a ... ), and Onegini today announced a partnership to ... banking solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... banks to provide their customers enhanced security to ...
(Date:4/15/2016)... April 15, 2016 Research ... Gait Biometrics Market 2016-2020,"  report to their offering.  ... ) , ,The global gait biometrics market is ... during the period 2016-2020. Gait analysis ... can be used to compute factors that are ...
Breaking Biology News(10 mins):
(Date:5/27/2016)... ... May 27, 2016 , ... Doctors in Italy, Japan, the UK and the ... associated protein (BAP1) gene and its link to malignant mesothelioma. Surviving Mesothelioma has just ... the full article now. , The studies analyzed for the new report included ...
(Date:5/27/2016)... , May 27, 2016 At present, ... playing in this space know that volatility is what makes ... companies on ActiveWallSt.com: Synta Pharmaceuticals Corp. (NASDAQ: SNTA ... Inc. (NASDAQ: LPTN ), and Heat Biologics Inc. ... access to the technical alerts for these stocks at: ...
(Date:5/26/2016)... Jersey and READING, England ... Indegene ( http://www.indegene.com ), a leading global ... life science, pharmaceutical and healthcare organisations and TranScrip ... innovative scientific support throughout the product lifecycle, today ... the launch of IntraScience.      (Logo: ...
(Date:5/26/2016)... , May 26, 2016 Despite the ... value in this space. Today,s pre-market research on ActiveWallSt.com directs ... Health Inc. (NASDAQ: RDUS ), Cerus Corp. (NASDAQ: ... ARWR ), and Five Prime Therapeutics Inc. (NASDAQ: ... briefings at: http://www.activewallst.com/ On ...
Breaking Biology Technology: