Navigation Links
Blood vessel builders
Date:10/13/2009

CLEVELAND Futuristic plans to grow replacement organs, bones or muscles for soldiers maimed on the battlefield or patients suffering from debilitating disease or injury won't be anything but science fiction unless new blood vessels can grow into that tissue.

Without blood vessels delivering oxygen and nutrients and clearing out waste, any replacement parts would starve.

Holding out stimulus money as an incentive, the National Institutes of Health challenged investigators across the country to come up with formulas to build vascular networks in engineered tissues.

A team of Case Western Reserve University researchers was awarded a $1 million "Challenge Grant" for their proposal to combine custom-designed synthetic molecules with the best-suited stem cells for the job. Leading the project are Roger Marchant and Horst von Recum, professors of biomedical engineering at the Case School of Engineering.

The researchers are developing their approach in a mouse, as a model for technology that could be used to improve human lives. The goal is to produce vascular networks that grow and maintain themselves like those that grow naturally.

"We're bringing together unique skills that alone wouldn't address the problem," said Marchant, who's had a long, distinguished career in biomimicry, imitating designs and processes found in nature.

Marchant has built complex synthetic molecules that assemble on vascular grafts and lay a foundation for a coating of sugar-rich molecules that prevent blood clots. He's developed synthetic proteins that latch onto bacteria and can prevent colonization on surfaces or act as a direct drug delivery site.

Over the next two years, Marchant will try to build molecules that assemble into the scaffolding of an entire network of blood vessels and attach stem cells onto the surface. "We're no longer working in two dimensions," he said. "We have to come up with techniques to build in three dimensions."

The project requires embryonic stem cells because adult vascular cells fail to regenerate quickly enough to build blood vessels, von Recum explained.

Recently, von Recum helped discover a way to identify which stem cells will successfully differentiate into endothelial cells the cells that line blood vessels and to remove other, unwanted cell types.

Von Recum's group will genetically modify the select stem cells to home in on and attach to Marchant's scaffolding and even break down and remodel the scaffolding as needed.

"In the body, our tissues are constantly regenerating and remodeling," von Recum said. "Osteoporosis is an example of what can go wrong: the cells that break down bone are working faster than cells that rebuild bone.

"A synthetic scaffold can't regenerate and remodel, but we can introduce new DNA in the stem cells so they can remodel the scaffolding, break down pieces of scaffolding in the way."


'/>"/>

Contact: Kevin Mayhood
kevin.mayhood@case.edu
216-368-4442
Case Western Reserve University
Source:Eurekalert

Related biology news :

1. Blood counts are clues to human disease
2. New blood-thinning drug safer than rat poison
3. University of Iowa scientists use blood-brain barrier as therapy delivery system
4. New blood tests promise simple, cost-effective diagnosis of gastrointestinal cancers
5. Diesel exhaust is linked to cancer development via new blood vessel growth
6. New information about how fat increases blood pressure could help identify those at risk
7. Gene signal GS-101 data shows safe and effective inhibition of ophthalmic blood vessel growth
8. Blood-flow metabolism mismatch predicts pancreatic tumor aggressiveness
9. Glow-in-the-dark red blood cells made from human stem cells
10. Anti-aging gene linked to high blood pressure
11. Mothers immune system may block fetal treatments for blood diseases
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)... NEW YORK , May 16, 2016   ... authentication solutions, today announced the opening of an IoT ... to strengthen and expand the development of embedded ... provides an unprecedented level of convenience and security with ... to authenticate one,s identity aside from DNA. EyeLock,s platform ...
(Date:4/28/2016)... First quarter 2016:   , ... the first quarter of 2015 The gross margin was ... 18.8) and the operating margin was 40% (-13) Earnings ... flow from operations was SEK 249.9 M (21.2) , ... SEK 7,000-8,500 M. The operating margin for 2016 is ...
(Date:4/15/2016)... DUBLIN , April 15, 2016 ... of the,  "Global Gait Biometrics Market 2016-2020,"  report ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait ... CAGR of 13.98% during the period 2016-2020. ... movement angles, which can be used to compute ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
(Date:6/24/2016)... ... , ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical ... mesothelioma. Their findings are the subject of a new article on the Surviving Mesothelioma ... in the blood, lung fluid or tissue of mesothelioma patients that can help point ...
(Date:6/23/2016)... ... 23, 2016 , ... UAS LifeSciences, one of the leading ... UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing high ... its list of well-respected retailers. This list includes such fine stores as Whole ...
(Date:6/23/2016)... 2016 /PRNewswire/ - FACIT has announced the creation ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or "the ... a portfolio of first-in-class WDR5 inhibitors for the ... WDR5 represent an exciting class of therapies, possessing ... for cancer patients. Substantial advances have been achieved ...
Breaking Biology Technology: