Navigation Links
Blood is thicker than water -- and blood plasma is, too
Date:2/19/2013

The results are significant because they can help to improve our understanding of medical conditions, such as thrombosis, aneurysms and arteriosclerosis. The research team is publishing its results in Physical Review Letters and the American Physical Society has highlighted the work on its Physics website, placing it on the Focus List of important physics news.

Blood flows differently than water. Anyone who has ever cut themselves knows that blood flows viscously and rather erratically. The similarity between blood and ketchup is something not only filmmakers are aware of. Experts refer to these materials as "non-Newtonian fluids," of which ketchup and blood are prime examples. These fluids have flow properties that change depending on conditions, with some becoming more viscous, while others become less viscous. Blood (like ketchup) is a "shear thinning fluid" that becomes less viscous with increasing pressure and it is this that allows blood to flow into the narrowest of capillaries. The flow properties of water are, in contrast, essentially constant.

Up until now it has been assumed that the special flow characteristics exhibited by blood were mainly due to the presence of the red blood cells, which account for about 45 percent of the blood's volume. Blood plasma was generally regarded simply as a spectator that played no active role. For decades, researchers have assumed that blood plasma flows like water. After all, plasma, the liquid in which the blood cells are suspended, consists to 92 percent of water. But results from researchers at Saarland University and at the University of Pennsylvania have now shown that plasma is a very special fluid that plays a crucial part in determining how blood flows. The results demonstrate that blood plasma is itself a non-Newtonian fluid.

According to the study's findings, the complex flow behavior of blood plasma could play a crucial role with respect to vascular wall deposits, aneurysms or blood clots. The results from this research may well help to improve computer simulations of this kind of pathological process.

The research team around experimental physicist Christian Wagner and engineer Paulo E. Arratia have studied the flow dynamics of blood experimentally. The work at Saarland University involved experiments in which the blood plasma was allowed to form drops inside a specially built apparatus equipped with high-speed cameras fitted with high-resolution microscope lenses to analyze drop formation. "Our experiments showed that the blood plasma forms threads, that is, it exhibits an extensional viscosity, which is something we do not observe in water," explained Professor Wagner. The plasma shows "viscoelastic" properties, which means that it exhibits both viscous and elastic behavior when deformed, forming threads that are typical of non-Newtonian fluids.

The studies by Professor Arratia and his team at the University of Pennsylvania involved a microfluidic approach in which they developed a model of a microvascular system in order to study the flow properties of blood plasma. Their measurements showed that blood plasma exhibits a flow behavior different to that of water and that plasma can demonstrate a substantially higher flow resistance. "An important part of our study was developing microfluidic instruments sensitive enough to pick up the small differences in viscosity that are the signature of non-Newtonian fluids," explained Professor Arratia.

Experiments performed by Professor Wagner's team in Saarbrcken also showed that blood plasma influences the creation of vortices in flowing blood. These vortices may facilitate the formation of deposits on blood vessel walls which could influence blood clot formation. In one of their experiments, the research team let plasma flow through a narrow channel of the kind found in stenotic (constricted) arteries or in a stent (a medical implant inserted into constricted blood vessels). The vortical structures were detected at the end, but also at the entrance, of the narrow channel and their formation is a direct result of the viscoelastic flow properties of blood plasma.


'/>"/>

Contact: Christian Wagner
c.wagner@mx.uni-saarland.de
49-068-130-23003
Saarland University
Source:Eurekalert  

Related biology news :

1. Rice University lab show how blood vessels regroup after stroke
2. Tumor blood vessels prevent the spread of cancer cells
3. Study identifies liver gene that regulates cholesterol and fat blood levels
4. Achilles heel: Popular drug-carrying nanoparticles get trapped in bloodstream
5. Propping open the door to the blood brain barrier
6. 1 of the key circuits in regulating genes involved in producing blood stem cells is deciphered
7. Chance finding reveals new control on blood vessels in developing brain
8. Mussel goo inspires blood vessel glue
9. Better blood transfusions for preterm babies
10. New risk factor identified for high blood pressure during pregnancy
11. Multiple sclerosis immune exchange between brain and blood is uncovered
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Blood is thicker than water -- and blood plasma is, too
(Date:4/5/2017)... Today HYPR Corp. , leading innovator ... of the HYPR platform is officially FIDO® Certified ... architecture that empowers biometric authentication across Fortune 500 enterprises ... over 15 million users across the financial services industry, ... product suites and physical access represent a growing portion ...
(Date:4/3/2017)...  Data captured by IsoCode, IsoPlexis Corporation,s ... statistically significant association between the potency of ... objective response of cancer patients post-treatment. The ... cancer patients will respond to CAR-T cell ... to improve both pre-infusion potency testing and cell ...
(Date:3/30/2017)... Trends, opportunities and forecast in this market ... (fingerprint, AFIS, iris recognition, facial recognition, hand geometry, vein ... use industry (government and law enforcement, commercial and retail, ... others), and by region ( North America ... Pacific , and the Rest of the World) ...
Breaking Biology News(10 mins):
(Date:5/24/2017)... ... May 24, 2017 , ... Patient ... developed with Wi-Fi connectivity to reduce the amount of wiring in a healthcare ... addition, compact mobile devices including infusion pumps, heart and hypertension monitoring, glucose monitoring, ...
(Date:5/23/2017)... ... 2017 , ... Firmex today announced the general ... for organizations to send and gather large files and confidential documents beyond the ... size limitations. , Using the same market-tested infrastructure as Firmex’s flagship Virtual ...
(Date:5/23/2017)... ... May 23, 2017 , ... ... source of human cardiovascular cells for research and the development of cardiac ... possible to generate large numbers of cardiomyocytes (hPSC-CMs). Due to varying differentiation ...
(Date:5/23/2017)... ... May 22, 2017 , ... NetDimensions has been ranked as ... Globe™ for Corporate Learning, 2017. , Aragon Research defines Leaders as organizations who ... perform against those strategies. NetDimensions’ ranking as a Leader due to its strengths ...
Breaking Biology Technology: