Navigation Links
Blind flies without recycling
Date:3/18/2013

Bochum, 18.3.2013

In the fruit fly Drosophila, the functions of the three enzymes Tan, Ebony and Black are closely intertwined - among other things they are involved in neurotransmitter recycling for the visual process. RUB researchers from the Department of Biochemistry showed for the first time that flies cannot see without this recycling. Their analysis of the enzyme Black also raises new questions as to its function. Anna Ziegler, Florian Brsselbach and Bernhard Hovemann report in the Journal of Comparative Neurology", which chose this topic as cover story.

Tan, Ebony and Black are important for the visual process and the formation of the cuticle

The fruit fly's genes tan, ebony and black contain the construction plans for three enzymes with the same names that work together in hardening the outer shell of the body, the cuticle. The same enzymes also occur in the compound eye of the fly. Researchers therefore assume that Tan, Ebony and Black work together in vision - similar to the way they do in the formation of the cuticle. In fact, flies with mutations of the ebony and tan genes cannot see. A mutation of the black gene, however, has no such effect. Prof. Hovemann's team examined where the enzyme Black appears in the compound eye and the role it plays in vision.

Black and Ebony always occur together

First, the scientists tested where the genes ebony and black are active in the compound eye of the fruit fly and in its extra eyes on the head, the ocelli. They put different types of light-sensitive cells called photoreceptors, under the microscope. The result: both genes are always read together - just like in the cuticle. This suggests that the functions of the enzymes Ebony and Black are closely linked.

Vision requires a continuous flow of the neurotransmitter histamine

When light falls into the compound eye, the photoreceptors release the neurotransmitter histamine. In previous studies, Bochum's biochemists already demonstrated that histamine is recycled via the glial cells surrounding the photoreceptors. There, the enzyme Ebony inactivates the neurotransmitter histamine by binding it to the amino acid -alanine, thus creating -alanyl-histamine. This molecule is transported from the glial cells back into the photoreceptors. Here, -alanine is split off again by the enzyme Tan, and histamine is produced. Previously, it was assumed that the enzyme Black is responsible for producing the -alanine, which is required for the inactivation of histamine. However, if a fly's eye has no functional Black, the visual process still runs normally. Hovemann's team therefore looked into the question of whether there is another supply route for -alanine. They also tested whether the fly eye can get around the recycling of histamine; this would be possible if the photoreceptors could directly reabsorb the released neurotransmitter, without it being inactivated in the glial cells.

No functioning sense of sight without histamine recycling

The researchers examined flies that were neither able to produce histamine themselves nor recycle it, because they lacked the enzyme for histamine synthesis and the enzyme Ebony. The team measured the flies' vision using so-termed electroretinography, which not only shows the excitation of the photoreceptor cells, but also the transmission of the signal to the brain. Even when the researchers added histamine from outside, the flies were blind. With this test, they showed for the first time that, for vision, Drosophila is dependent on the histamine recycling in the glial cells. Without recycling the enzyme Ebony, the cells in the insect eye cannot make any use of the neurotransmitter.

Flies can also see with disturbed -alanine production

Cells are not only able to produce -alanine with the aid of the enzyme Black, but also by converting the molecule uracil into -alanine using other enzymes. Hovemann's team inactivated both production pathways for -alanine and tested the vision of the fruit fly again. According to the electroretinogram, the animals' sense of sight was not impaired by the double mutation. "The results seem to represent a contradiction", says Bernhard Hovemann. "Although the insect eyes with the double mutation cannot produce -alanine, the animals seem to have normal vision. At the same time, our data clearly shows that the recycling by attaching -alanine is necessary for the animals to see." The researchers suggest that -alanine like histamine is recycled in a circuit between glial cells and photoreceptors. This would mean that the enzyme Black merely compensates for -alanine losses. "That would explain why we do not immediately find visual defects in flies which cannot produce new -alanine", says Hovemann. These puzzles can, however, only be solved by further studies.


'/>"/>

Contact: Bernhard Hovemann
Bernhard.Hovemann@rub.de
49-234-322-4235
Ruhr-University Bochum
Source:Eurekalert

Related biology news :

1. Long-suspected cause of blindness from eye disease disproved
2. First in the world - Singapore scientists discover genes responsible for cornea blindness
3. Blind patient reads words stimulated directly onto the retina
4. Cells from skin create model of blinding eye disease
5. Singapore scientists find genes associated with glaucoma, a major cause of eye blindness
6. New cause of child blindness identified
7. Massachusetts Eye and Ear researchers discover elusive gene that causes a form of blindness from birth
8. Antioxidant shown to reduce blindness risk in extremely premature babies
9. UF study shows spiders, not birds, may drive evolution of some butterflies
10. Fruit flies force their young to drink alcohol -- for their own good
11. Pirate-like flies connect symbiosis to diversity
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/13/2016)... physicians supporting Medicaid patients in Central Florida ... telehealth thanks to a new partnership with higi.   ... can routinely track key health measurements, such as blood ... they opt in, share them with IMPOWER clinicians through ... location at no cost. By leveraging this data, IMPOWER ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, one of the ... brand, UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing ... to its list of well-respected retailers. This list includes such fine stores as ...
(Date:6/23/2016)... -- A person commits a crime, and the detective uses ... criminal down. An outbreak of foodborne illness makes ... uses DNA evidence to track down the bacteria that caused ... not. The FDA has increasingly used a complex, cutting-edge technology ... Put as simply as possible, whole genome sequencing is a ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young Investigator ... Members of the Class of 2016 were selected from a pool of 128 ... About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... ... 2016 , ... Supplyframe, the Industry Network for electronics hardware ... . Located in Pasadena, Calif., the Design Lab’s mission is to bring together ... built and brought to market. , The Design Lab is Supplyframe’s physical representation ...
Breaking Biology Technology: