Navigation Links
Blind flies without recycling

Bochum, 18.3.2013

In the fruit fly Drosophila, the functions of the three enzymes Tan, Ebony and Black are closely intertwined - among other things they are involved in neurotransmitter recycling for the visual process. RUB researchers from the Department of Biochemistry showed for the first time that flies cannot see without this recycling. Their analysis of the enzyme Black also raises new questions as to its function. Anna Ziegler, Florian Brsselbach and Bernhard Hovemann report in the Journal of Comparative Neurology", which chose this topic as cover story.

Tan, Ebony and Black are important for the visual process and the formation of the cuticle

The fruit fly's genes tan, ebony and black contain the construction plans for three enzymes with the same names that work together in hardening the outer shell of the body, the cuticle. The same enzymes also occur in the compound eye of the fly. Researchers therefore assume that Tan, Ebony and Black work together in vision - similar to the way they do in the formation of the cuticle. In fact, flies with mutations of the ebony and tan genes cannot see. A mutation of the black gene, however, has no such effect. Prof. Hovemann's team examined where the enzyme Black appears in the compound eye and the role it plays in vision.

Black and Ebony always occur together

First, the scientists tested where the genes ebony and black are active in the compound eye of the fruit fly and in its extra eyes on the head, the ocelli. They put different types of light-sensitive cells called photoreceptors, under the microscope. The result: both genes are always read together - just like in the cuticle. This suggests that the functions of the enzymes Ebony and Black are closely linked.

Vision requires a continuous flow of the neurotransmitter histamine

When light falls into the compound eye, the photoreceptors release the neurotransmitter histamine. In previous studies, Bochum's biochemists already demonstrated that histamine is recycled via the glial cells surrounding the photoreceptors. There, the enzyme Ebony inactivates the neurotransmitter histamine by binding it to the amino acid -alanine, thus creating -alanyl-histamine. This molecule is transported from the glial cells back into the photoreceptors. Here, -alanine is split off again by the enzyme Tan, and histamine is produced. Previously, it was assumed that the enzyme Black is responsible for producing the -alanine, which is required for the inactivation of histamine. However, if a fly's eye has no functional Black, the visual process still runs normally. Hovemann's team therefore looked into the question of whether there is another supply route for -alanine. They also tested whether the fly eye can get around the recycling of histamine; this would be possible if the photoreceptors could directly reabsorb the released neurotransmitter, without it being inactivated in the glial cells.

No functioning sense of sight without histamine recycling

The researchers examined flies that were neither able to produce histamine themselves nor recycle it, because they lacked the enzyme for histamine synthesis and the enzyme Ebony. The team measured the flies' vision using so-termed electroretinography, which not only shows the excitation of the photoreceptor cells, but also the transmission of the signal to the brain. Even when the researchers added histamine from outside, the flies were blind. With this test, they showed for the first time that, for vision, Drosophila is dependent on the histamine recycling in the glial cells. Without recycling the enzyme Ebony, the cells in the insect eye cannot make any use of the neurotransmitter.

Flies can also see with disturbed -alanine production

Cells are not only able to produce -alanine with the aid of the enzyme Black, but also by converting the molecule uracil into -alanine using other enzymes. Hovemann's team inactivated both production pathways for -alanine and tested the vision of the fruit fly again. According to the electroretinogram, the animals' sense of sight was not impaired by the double mutation. "The results seem to represent a contradiction", says Bernhard Hovemann. "Although the insect eyes with the double mutation cannot produce -alanine, the animals seem to have normal vision. At the same time, our data clearly shows that the recycling by attaching -alanine is necessary for the animals to see." The researchers suggest that -alanine like histamine is recycled in a circuit between glial cells and photoreceptors. This would mean that the enzyme Black merely compensates for -alanine losses. "That would explain why we do not immediately find visual defects in flies which cannot produce new -alanine", says Hovemann. These puzzles can, however, only be solved by further studies.


Contact: Bernhard Hovemann
Ruhr-University Bochum

Related biology news :

1. Long-suspected cause of blindness from eye disease disproved
2. First in the world - Singapore scientists discover genes responsible for cornea blindness
3. Blind patient reads words stimulated directly onto the retina
4. Cells from skin create model of blinding eye disease
5. Singapore scientists find genes associated with glaucoma, a major cause of eye blindness
6. New cause of child blindness identified
7. Massachusetts Eye and Ear researchers discover elusive gene that causes a form of blindness from birth
8. Antioxidant shown to reduce blindness risk in extremely premature babies
9. UF study shows spiders, not birds, may drive evolution of some butterflies
10. Fruit flies force their young to drink alcohol -- for their own good
11. Pirate-like flies connect symbiosis to diversity
Post Your Comments:
(Date:6/1/2016)... Favorable Government Initiatives Coupled With ... Identification to Boost Global Biometrics System Market Through 2021  ... report, " Global Biometrics Market By Type, By ... 2011 - 2021", the global biometrics market is projected ... of growing security concerns across various end use sectors ...
(Date:5/16/2016)...   EyeLock LLC , a market leader of ... an IoT Center of Excellence in Austin, ... of embedded iris biometric applications. EyeLock,s iris ... security with unmatched biometric accuracy, making it the most ... EyeLock,s platform uses video technology to deliver a fast ...
(Date:5/3/2016)... VILNIUS, Lithuania , May 3, 2016 /PRNewswire/ ... today released the MegaMatcher Automated Biometric Identification ... deployment of large-scale multi-biometric projects. MegaMatcher ABIS can ... and accuracy using any combination of fingerprint, face ... of MegaMatcher SDK and MegaMatcher ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... , ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical ... mesothelioma. Their findings are the subject of a new article on the Surviving Mesothelioma ... in the blood, lung fluid or tissue of mesothelioma patients that can help point ...
(Date:6/23/2016)... 2016 A person commits a crime, and the ... track the criminal down. An outbreak of foodborne ... Administration (FDA) uses DNA evidence to track down the bacteria ... far-fetched? It,s not. The FDA has increasingly used a complex, ... foodborne illnesses. Put as simply as possible, whole genome sequencing ...
(Date:6/23/2016)... 2016   EpiBiome , a precision microbiome engineering ... debt financing from Silicon Valley Bank (SVB). The financing ... advance its drug development efforts, as well as purchase ... "SVB has been an incredible strategic partner to us ... bank would provide," said Dr. Aeron Tynes Hammack ...
(Date:6/23/2016)... 2016  Blueprint Bio, a company dedicated to identifying, ... community, has closed its Series A funding round, according ... "We have received a commitment from Forentis Fund ... to meet our current goals," stated Matthew Nunez ... to complete validation on the current projects in our ...
Breaking Biology Technology: