Navigation Links
Birth of an enzyme
Date:3/24/2008

Mankind triumphed in a recent 'competition' against nature when scientists succeeded in creating a new type of enzyme for a reaction for which no naturally occurring enzyme has evolved. This achievement opens the door to the development of a variety of potential applications in medicine and industry.

Enzymes are, without a doubt, a valuable model for understanding the intricate works of nature. These molecular machines which without them, life would not exist are responsible for initiating chemical reactions within the body. Millions of years of natural selection have fine-tuned the activity of such enzymes, allowing chemical reactions to take place millions of times faster. In order to create artificial enzymes, a comprehensive understanding of the structure of natural enzymes, their mode of action, as well as advanced protein engineering techniques is needed. A team of scientists from the University of Washington, Seattle, and the Weizmann Institute of Science, Israel, made a crucial breakthrough toward this endeavor. Their findings have recently been published in the scientific journal Nature.

Enzymes are biological catalysts that are made from a string of amino acids, which fold into specific three-dimensional protein structures. The scientists aim was to create an enzyme for a specific chemical reaction whereby a proton (a positively charged hydrogen atom) is removed from carbon a highly demanding reaction and rate-determining step in numerous processes for which no enzymes currently exist, but which would be beneficial in helping to speed up the reaction. During the first heat of the 'competition,' the research team designed the 'heart' of the enzymatic machine the active site where the chemical reactions take place.

The second heat of the competition was to design the backbone of the enzyme, i.e., to determine the sequence of the 200 amino acids that make up the structure of the protein. This was no easy feat seeing as there is an infinite number of ways to arrange 20 different types of amino acids into strings of 200. But in practice, only a limited number of possibilities are available as the sequence of amino acids determines the structure of the enzyme, which in turn, determines its specific activity. Prof. David Baker of the University of Washington, Seattle, used novel computational methodologies to scan tens of thousands of sequence possibilities, identifying about 60 computationally designed enzymes that had the potential to carry out the intended activity. Of these 60 sequences tested, eight advanced to the next 'round' having showed biological activity. Of these remaining eight, three sequences got through to the 'final stage,' which proved to be the most active. Drs. Orly Dym and Shira Albeck of the Weizmann Institutes Structural Biology Department solved the structure of one of the final contestants, and confirmed that the enzymes created were almost identical to the predicted computational design.

But the efficiency of the new enzymes could not compare to that of naturally-occurring enzymes that have evolved over millions of years. This is where 'mankind' was on the verge of losing the competition to nature, until Prof. Dan Tawfik and research student Olga Khersonsky of the Weizmann Institutes Biological Chemistry Department stepped in, whereby they developed a method allowing the synthetic enzymes to undergo 'evolution in a test tube' that mimics natural evolution. Their method is based on repeated rounds of random mutations followed by scanning the mutant enzymes to find the ones who showed the most improvement in efficiency. These enzymes then underwent further rounds of mutation and screening. Results show that it takes only seven rounds of evolution in a test tube to improve the enzymes efficiency 200-fold compared with the efficiency of the computer-designed template, resulting in a million-fold increase in reaction rates compared with those that take place in the absence of an enzyme.

The scientists found that the mutations occurring in the area surrounding the enzymes active site caused minor structural changes, which in turn, resulted in an increased chemical reaction rate. These mutations therefore seem to correct shortcomings in the computational design, by shedding light on what might be lacking in the original designs. Other mutations increased the flexibility of the enzymes, which helped to increase the speed of substrate release from the active site.

'Reproducing the breathtaking performances of natural enzymes is a daunting task, but the combination of computational design and molecular in vitro evolution opens up new horizons in the creation of synthetic enzymes,' says Tawfik. 'Thanks to this research, we have gained a better understanding of the structure of enzymes as well as their mode of action. This, in turn, will allow us to design and create enzymes that nature itself had not thought of, which could be used in various processes, such as neutralizing poisons, developing medicines, as well as for many further potential applications.'


'/>"/>

Contact: Yivsam Azgad
news@weizmann.ac.il
972-893-43856
Weizmann Institute of Science
Source:Eurekalert

Related biology news :

1. Deadly genetic disease prevented before birth in zebrafish
2. Northern right whales head south to give birth, leave genetic fingerprints with NOAA researchers
3. Immunosuppressant further linked to birth defects
4. New folic acid seal helps women choose enriched grain foods to help prevent birth defects
5. Certain diseases, birth defects may be linked to failure of protein recycling system
6. The birth and death of dopamine neurons: A new model for neurodegeneration
7. Birth of an iceberg
8. Researchers find evidence linking stress caused by the Sept. 11 disaster with low birth weights
9. Birth records hold pancreatic cancer clue
10. Risk of common vaginal infection linked to preterm birth appears higher for blacks
11. Researchers probe a DNA repair enzyme
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/15/2016)... -- --> --> According ... "Digital Door Lock Systems Market - Global Industry Analysis, Size, ... digital door lock systems market in terms of revenue was ... to grow at a CAGR of 31.8% during the period ... (MSMEs) across the world and high industrial activity driving inclusive ...
(Date:3/11/2016)... March 11, 2016 --> ... research report "Image Recognition Market by Technology (Pattern Recognition), ... Advertising), by Deployment Type (On-Premises and Cloud), by Industry ... published by MarketsandMarkets, the global market is expected to ... 29.98 Billion by 2020, at a CAGR of 19.1%. ...
(Date:3/9/2016)... GARDENS, Fla. , March 9, 2016 /PRNewswire/ ... management authentication and enrollment solutions, today announced the ... DigitalPersona ® Altus multi-factor authentication platform. ... and InfoSec managers to step-up security where it,s ... Washington, DC . ...
Breaking Biology News(10 mins):
(Date:5/3/2016)... New York, NY (PRWEB) , ... May 03, ... ... and NeuroTech NYC , the sensor and data driven conferences, will take ... include:, UnitedHealth's Vidya Raman-Tangella on incorporating technology -- ...
(Date:5/2/2016)... 2, 2016 Q BioMed Inc. ... partner Mannin Research Inc. will be attending the Association ... place from May 1-5, 2016 in Seattle ... with its vendors and research partners. The meeting provides ... and other collaborative opportunities for the MAN-01 program for ...
(Date:4/29/2016)... ... April 29, 2016 , ... Proove ... excited to announce the launch of the Proove Health Foundation . The ... education to promote the use of personalized medicine for tackling the nation’s most-pressing ...
(Date:4/29/2016)... ... ... Intelligent Implant Systems announced today that the two-level components for the Revolution™ Spinal System ... These components expand the capabilities of the system and allow Revolution™ to be utilized ... the company has seen significant sales growth in 1Q 2016, and the system is ...
Breaking Biology Technology: