Navigation Links
Biosynthetics production with detours
Date:10/31/2008

Scientists at the Helmholtz-Zentrum fr Infektionsforschung (HZI) in Braunschweig, Germany have achieved an important advance in better understanding metabolic pathways in bacteria and their use. Using computer models, the "System and Synthetic Biology" working group, headed up by Vtor Martins dos Santos, calculated the genetic changes that are necessary for increasing the production of biosynthetics in the Pseudomonas putida bacteria. Experiments in the laboratory subsequently confirmed the results. With this, the creation of natural synthetics could be increased in a targeted manner in the future. The well-known science magazine, "PLoS Computational Biology" published the results today.

Pseudonomads are bacteria that occur everywhere in our environment. Their changeable and flexible metabolism makes it possible for them to live in different habitats, in water, in soil, on plants and in animals. Among these pseudonomads, there are exponents that can be used in biotechnology. These include Pseudomonas putida: It produces chemicals, pharmaceutical products, degrades waste and toxins. It also plays an important role in manufacturing high-quality substances for industry.

Now, in cooperation with a working group at the Virginia University in America, the researchers working with Martins dos Santos searched for possibilities of increasing the production of natural materials in P. putida. For this, they chose the chemical compound, polyhydroxy butanoic acid (PHB): It is one of the important biosynthetics, which could play a major role in medicine and industry in the future. From it, seam materials, screws, adhesives or implants can be created, which dissolve after an operation or biodegradable packaging. In order to increase the yield of PHB in P. putida, the researchers developed a mathematical model.

However, the path toward such a model is long and drawn-out. "When sequencing the genome of an organism, you frequently do not know what the individual genes mean and how their interaction functions", says Martins dos Santos. Based on computer models and knowledge from databases, the researchers created a network of individual genes and metabolic processes in P. putida. "All of this is similar to a map with cities and motorways", say, Jacek Puchałka, a colleague in Martins dos Santos' working group. "On some roads, there is a great deal of traffic, while others are very quiet. Some roads are blocked and then there are detours. The metabolic paths in P. putida behave in exactly the same way."

The researchers took advantage of the ability of bacteria to divert their metabolic paths, if a path is disrupted by mutations. The computer model shows which paths need to be changed in P. putida, in order to increase the yield of PHB. This is important for industry: Currently, the production of PHB is still very long and drawn-out and really not justifiable against the oil-based synthetics. "In future, it will be possible to manufacture biosynthetics more efficiently in large quantities. An if we have made our contribution to this, we are very pleased", says Puchałka.


'/>"/>

Contact: Hannes Schlender
presse@helmholtz-hzi.de
49-053-161-811-400
Helmholtz Association of German Research Centres
Source:Eurekalert

Related biology news :

1. Green tea boosts production of detox enzymes, rendering cancerous chemicals harmless
2. The 5 Ws of corn production
3. Low oxygen in coastal waters impairs fish reproduction
4. UCI and CODA Genomics collaborate to re-engineer yeast for biofuel production
5. Curbing C. difficiles toxin production
6. Neuronal conduction of excitation without action potentials based on ceramide production
7. Simulating kernel production influences maize model accuracy
8. Botched production of insulin molecule may lead to diabetes
9. Salmonid hatcheries cause stunning loss of reproduction
10. Increase in ethanol production from corn could significantly impact
11. New evidence for female control in reproduction
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/15/2016)... "Increase in mobile transactions is driving the growth of ... expected to grow from USD 4.03 billion in 2015 ... of 29.3% between 2016 and 2022. The market is ... smart devices, government initiatives, and increasing penetration of e-commerce ... to grow at a high rate during the forecast ...
(Date:12/8/2016)... Market Research Future published a half cooked research report ... Security and Service Market is expected to grow over the CAGR ... Highlights: ... Mobile Biometric Security and Service Market is ... of authentication and security from unwanted cyber threats. The increasing use ...
(Date:12/7/2016)... -- According to a new market research report "Emotion Detection and ... Recognition), Service, Application Area, End User, And Region - Global Forecast to 2021", ... Billion in 2016 to USD 36.07 Billion by 2021, at a Compound Annual ... ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... , Jan. 19, 2017 /PRNewswire -- WuXi AppTec, ... open-access capability and technology platform, today announced that ... biology focused preclinical drug discovery contract research organization ... become a wholly-owned subsidiary of WuXi, and will ... and providing greater services. The acquisition will further ...
(Date:1/19/2017)... Calif. , Jan. 19, 2017  ArmaGen, ... Mathias Schmidt , Ph.D., as chief executive officer, ... of directors. Dr. Schmidt brings to ArmaGen more than ... the research and development of biotherapeutics and pharmaceuticals. ... executive with the diverse experience and skillset necessary ...
(Date:1/19/2017)... ... January 19, 2017 , ... ... the full spectrum of drug and device development, and Prism Clinical Research ... and clinicians, today announced Verified Clinical Trials (VCT) has been selected ...
(Date:1/18/2017)... ... January 18, 2017 , ... ... interconnect using USB or PCI Express, announced the ZEM5310 USB 3.0 FPGA Module, ... into a compact business-card sized form factor suitable for prototyping, testing, and production-ready ...
Breaking Biology Technology: