Navigation Links
Biophysicists unravel secrets of genetic switch
Date:8/30/2012

When an invading bacterium or virus starts rummaging through the contents of a cell nucleus, using proteins like tiny hands to rearrange the host's DNA strands, it can alter the host's biological course. The invading proteins use specific binding, firmly grabbing onto particular sequences of DNA, to bend, kink and twist the DNA strands. The invaders also use non-specific binding to grasp any part of a DNA strand, but these seemingly random bonds are weak.

Emory University biophysicists have experimentally demonstrated, for the fist time, how the nonspecific binding of a protein known as the lambda repressor, or C1 protein, bends DNA and helps it close a loop that switches off virulence. The researchers also captured the first measurements of that compaction.

Their results, published in Physical Review E, support the idea that nonspecific binding is not so random after all, and plays a critical role in whether a pathogen remains dormant or turns virulent.

"Our findings are the first direct and quantitative determination of non-specific binding and compaction of DNA," says Laura Finzi, an Emory professor of biophysics whose lab led the study. "The data are relevant for the understanding of DNA physiology, and the dynamic characteristics of an on-off switch for the expression of genes."

C1 is the repressor protein of the lambda bacteriophage, a virus that infects the bacterial species E. coli, and a common laboratory model for the study of gene transcription.

The virus infects E. coli by injecting its DNA into the host cell. The viral DNA is then incorporated in the bacterium's chromosome. Shortly afterwards, binding of the C1 protein to specific sequences on the viral DNA induces the formation of a loop. As long as the loop is closed, the virus remains dormant. If the loop opens, however, the machinery of the bacteria gets hi-jacked: The virus switches off the bacteria's genes and switches on its own, turning virulent.

"The loop basically acts as a molecular switch, and is very stable during quiescence, yet it is highly sensitive to the external environment," Finzi says. "If the bacteria is starved or poisoned, for instance, the viral DNA receives a signal that it's time to get off the boat and spread to a new host, and the loop is opened. We wanted to understand how this C1-mediated, loop-based mechanism can be so stable during quiescence, and yet so responsive to switching to virulence when it receives the signal to do so."

Finzi runs one of a handful of physics labs using single-molecule techniques to study the mechanics of gene expression. In 2009, her lab proved the formation of the C1 loop. "We then analyzed the kinetics of loop formation and gained evidence that non-specific binding played a role," Finzi says. "We wanted to build on that work by precisely characterizing that role."

Emory undergraduate student Chandler Fountain led the experimental part of the study. He used magnetic tweezers, which can pull on DNA molecules labeled with miniscule magnetic beads, to stretch DNA in a microscope flow chamber. Gradually, the magnets are moved closer to the DNA, pulling it further, so the length of the DNA extension can be plotted against the applied force.

"You get a curve," Finzi explains. "It's not linear, because DNA is a spring. Then you put the same DNA in the presence of C1 protein and see how the curve changes. Now, you need more force to get to the same extension because the protein holds onto the DNA and bends it."

An analysis of the data suggests that, while the specific binding of the C1 protein forms the loop, the non-specific binding acts like a kind of zipper, facilitating the closure of the loop, and keeping it stable until the signal comes to open it.

"The zipper-like effect of the weaker binding sites also allows the genetic switch to be more responsive to the environment, providing small openings that allow it to breathe, in a sense," Finzi explains. "So the loop is never permanently closed."

The information about how the C1 genetic switch works may provide insights into the workings of other genetic switches.

"Single-molecule techniques have opened a new era in the mechanics of biological processes," Finzi says. "I hope this kind of experiment will lead to better understanding of how our own DNA is compacted into chromosomes, and how it unravels locally to become expressed."


'/>"/>
Contact: Beverly Clark
beverly.clark@emory.edu
404-712-8780
Emory University
Source:Eurekalert

Related biology news :

1. How bacteria change movement direction in response to oxygen: Molecular interactions unravelled
2. Lets get moving: Unraveling how locomotion starts
3. Virginia Tech and University of Tuscia lead team to unravel origin of devastating kiwifruit bacterium
4. Stomata development in plants unraveled -- a valuable discovery for environmental research
5. Researchers unravel genetic mechanism of fatty liver disease in obese children
6. Unraveling biological networks
7. Ancient genome reveals its secrets
8. New model gives hands-on help for learning the secrets of molecules
9. Decoding the secrets of balance
10. Hidden secrets in the worlds most northerly rainforests
11. Large, medically important class of proteins starts to yield its secrets
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/1/2019)... ORLANDO, Fla. (PRWEB) , ... August 01, 2019 , ... ... at the point of care. It is fully developed with over 100 units ... with applications into new fields of use, our collaboration with axiVEND will give us ...
(Date:8/1/2019)... ... ... USDM Life Sciences (USDM) announces that Jay Crowley, Vice President of ... with the upcoming EU MDR IVDR regulations . , Jay is ... positions over his 26 years at the FDA, including developing the framework and authoring ...
(Date:7/23/2019)... (PRWEB) , ... July 22, 2019 , ... Personalized Stem ... a New Drug (IND) application for use of a person’s own adipose-derived stem cells ... stem cells as a treatment of osteoarthritis in the knee. , This ...
Breaking Biology News(10 mins):
(Date:8/14/2019)... WORTH, Texas (PRWEB) , ... August 13, 2019 ... ... Fort Collins, Colorado to focus on prepackaged mobile phases for QC laboratories. After ... reinvent Chata from its laboratory sciences approach into a valued supplier of manufacturing ...
(Date:8/6/2019)... ... August 06, 2019 , ... ... microbiome populations down to the strain level, has announced partnerships with six international ... products to companies and research organizations in Australia, Benelux, Indonesia, Korea, Malaysia, Myanmar, ...
(Date:7/30/2019)... ... July 30, 2019 , ... The summer season ... events company. Not only has the company already hosted many of its signature ... Parties to its guests. , With Lajollacooks4u’s Private Cooking Parties, guests prepare and ...
(Date:7/19/2019)... ... July 18, 2019 , ... World renowned ... be joining forces with California-based charity Coalition Duchenne for its 9th Annual Expedition ... raises awareness and funding for Duchenne muscular dystrophy and was founded by Sabahan ...
Breaking Biology Technology: