Navigation Links
Biomedical research revealing secrets of cell behavior

TEMPE, Ariz -- Knowing virtually everything about how the body's cells make transitions from one state to another for instance, precisely how particular cells develop into multi-cellular organisms would be a major jump forward in understanding the basics of what drives biological processes.

Such a leap could open doors to far-reaching advances in medical science, bioengineering and related areas.

An interdisciplinary team of researchers at Arizona State University, with a partner at Imperial College London, report on taking at least a step toward better comprehension of the fundamentals of "cell fate determination" in the prominent research journal Proceedings of the National Academy of Sciences (PNAS).

Cell fate determination relates to the mechanisms by which a cell "decides" in what direction it will go in moving through transitional phases into a final state.

Using mathematical modeling and synthetic biology techniques the team is manufacturing artificial gene networks (a collection of DNA segments in a cell that interact with each other) and introducing them into cells in the laboratory.

From there, the researchers are able to closely observe through microscopic imaging what is happening with particular cells at their "tipping point," a stage of rest right before they transition into other states.

By learning what takes place at that point, "We can get closer to a fundamental insight about all biology," says biomedical engineer and synthetic biologist Xiao Wang.

Once the mechanisms determining the fate of cells are better understood, Wang says, "We could make gene networks or devices that do what we want them to do," such as create cells that produce medicinal drugs or that kill diseased cells, or create cells that act as sensors to detect environmental hazards.

Wang is an assistant professor in the School of Biological and Health Systems Engineering, one of ASU's Ira A. Fulton Schools of Engineering. He is the senior author of the PNAS paper.

Wang's fellow authors are: biomedical engineering research scientists Min Wu and Xiaohui Li, who work in Wang's lab; electrical engineering graduate student Ri-Qi Su; Ying-Cheng Lai, a professor in ASU's School of Electrical, Computer and Energy Engineering; and synthetic biologist Tom Ellis from Imperial College London.

Their article, "Engineering of regulated stochastic cell fate determination," is available online at

The research team is studying the molecular-level interactions within the DNA sequences of cells, through which the products of one gene affect those of other genes. This helps to trace the lineages of cell development and reveal what drives them in the direction of what kinds of cells they will be in their final states.

Within deeper knowledge of the workings of such processes lays the key to more effectively engineering cells and gene networks.

Wang's team is focused on investigating the intricate properties of gene networks with the goal of learning new ways of regulating the mechanisms behind cell fate determination.

"Our research could be built upon to look at more complicated gene networks and more complex cellular behavior," paving the way for expanding the capabilities of bioengineering to protect and maintain human health, Wang says.


Contact: Joe Kullman
Arizona State University

Related biology news :

1. New FASEB analysis documents impact of budget cuts on biomedical research
2. Core for Life, a new European alliance in biomedical research
3. WPI Biomedical Technology in final 4 of international business plan contest
4. Breakthrough study opens door to broader biomedical applications for Raman spectroscopy
5. Vilcek Prize for Biomedical Science split between 2 giants of immunology
6. 12th annual Wiley Prize in Biomedical Sciences awarded
7. Wiley Prize in Biomedical Sciences awarded to Rosbash, Hall and Young
8. Improving the development of new cancer models using an advanced biomedical imaging method
9. Lyncean Technologies Inc. sells Compact Light Source to Munich biomedical-imaging research center
10. FASEB urges biomedical research community to speak out against sequestration
11. US investment in biomedical and health research on downward trend
Post Your Comments:
(Date:10/7/2015)... -- --> --> According ... third quarter 2015 amounted to around 960 MSEK. This exceeds ... was communicated 20 August 2015. --> ... a continued growing demand for the company,s products, the revenues ... than during the third quarter. The revenue guidance for 2015 ...
(Date:10/2/2015)... , Oct. 02 2015 ... the "Enforcing the Law Using Biometrics" ... ) has announced the addition of the ... their offering. --> Research and Markets ... the "Enforcing the Law Using Biometrics" ...
(Date:9/29/2015)... Sept. 29, 2015 News facts: ... while also saving energy , Minimized design shrinks ... Power Active Mode and embedded Fujitsu PalmSecure authentication enable ... Fujitsu today shows that good things come in ... models to its enterprise desktop and mobile portfolio. Featuring ...
Breaking Biology News(10 mins):
(Date:10/12/2015)... CAESAREA, Israel , October 12, 2015 ... of the Dario™ Diabetes Management Solution, today announced its ... a patient case study at MobiHealth,s 5th EAI ... Focused on, "Transforming healthcare through innovations in mobile and ... London, England from October 14 - ...
(Date:10/12/2015)... , Oct. 12, 2015 VolitionRx Limited ... completed clinical study of its NuQ ® blood-based test ... online issue of Clinical Epigenetics , the official journal ... in collaboration with Lund University, ... , MD, PhD, Professor of Surgery and Vice-Dean, Faculty of ...
(Date:10/12/2015)... ... October 12, 2015 , ... NeuMedics Inc., is a specialty biopharmaceutical ... that can safely and chronically be administered as an eye drop, announced today it ... The Cleveland Clinic and taking place October 25th to October 28th at The Cleveland ...
(Date:10/11/2015)... ... October 11, 2015 , ... ... System has been officially launched and multiple surgeries have been completed with this ... Hunter of the Neuroscience & Spine Center of the Carolinas. The Revolution™ ...
Breaking Biology Technology: