Navigation Links
Biomedical research profits from the exploration of the deep sea
Date:11/19/2008

A study published in the scientific journal PLoS ONE highlights how the exploration of the ocean depths can benefit humankind. This is the story of a voyage of discovery, starting with marine animals that glow, the identification of the molecules responsible and their application as marker in living cells.

Many marine organisms such as sea anemones and corals produce fluorescent proteins, which come in a variety of dazzling hues. Fluorescent proteins have revolutionized biomedical research by enabling the imaging of processes within living cells and tissues. The impact of this technology is considered so high that the 2008 Nobel Prize in Chemistry was most recently awarded to scientists that discovered and further developed the first green fluorescent protein that was applied as cellular marker.

Many useful fluorescent proteins have been found in species that live in the sun-drenched tropical coral reefs. But much less is known about species living in the darkness of the deep sea.

An international team of scientists led by Jrg Wiedenmann of the National Oceanography Centre, Southampton, Mikhail Matz of the University of Texas in Austin and Charles Mazel from the company NightSea have explored the Gulf of Mexico using a submarine, the US Johnson-Sea-Link II, equipped with a system designed to detect fluorescence.

They discovered a species of a sea anemone-like animal (a ceriantharian, or tube anemone) possibly a new species that emits bright green fluorescence. They went on to identify a novel green fluorescent protein.

Although isolated from an animal that lives in essentially complete darkness at depths between 500 and 600 metres and at low temperatures (below 10 C), the new fluorescent protein, named cerFP505, can be well applied as marker protein in mammalian cells at normal body temperature (37 C).

The brightness and stability of cerFP505 are similar to other fluorescent proteins used in biomedical research. The fluorescence can be switched on and off in a controlled way by alternating blue and near-ultra violet light. These properties make cerFP505 an ideal lead structure for the development of marker proteins for super-resolution microscopy, say the researchers.

Further useful properties can potentially be built into the fluorescent protein by genetic engineering. "Moreover", they say, "the discovery of photoswitchable cerFP505 from a deep sea animal reveals the lightless depths of the oceans as a new reservoir of proteins with novel and highly desirable properties for imaging applications".


'/>"/>

Contact: Rebecca Walton
rwalton@plos.org
Public Library of Science
Source:Eurekalert

Related biology news :

1. Boston University biomedical engineers find chink in bacterias armor
2. $22 million gift from Alfred Taubman launches new biomedical research institute
3. USC biomedical team to participate in $6 million low vision project
4. Phase 2 of Singapores Biomedical Sciences Initiative gains momentum for clinical research
5. UVa biomedical engineering study shows magnetic field can reduce swelling
6. Springer expands publishing partnership with the Biomedical Engineering Society
7. NJIT biomedical engineer receives NSF Career Development Award
8. Johnson & Johnson honors 2008 recipients of the Dr. Paul Janssen Award for Biomedical Research
9. Supercomputer provides massive computational boost to biomedical research at TGen
10. Biomedical engineers detective work reveals antibiotic mechanism
11. Research shows skeleton to be endocrine organ
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/29/2017)... March 29, 2017  higi, the health IT company ... North America , today announced a Series ... acquisition of EveryMove. The new investment and acquisition accelerates ... tools to transform population health activities through the collection ... higi collects and secures data today on ...
(Date:3/24/2017)... Research and Markets has announced the addition ... Trends - Industry Forecast to 2025" report to their offering. ... The Global Biometric ... of around 15.1% over the next decade to reach approximately $1,580 ... market estimates and forecasts for all the given segments on global ...
(Date:3/22/2017)... 21, 2017 Optimove , provider ... retailers such as 1-800-Flowers and AdoreMe, today announced ... and Replenishment. Using Optimove,s machine learning algorithms, these ... and replenishment recommendations to their customers based not ... of customer intent drawn from a complex web ...
Breaking Biology News(10 mins):
(Date:4/27/2017)... ... April 27, 2017 , ... ... why mass flow controllers based on capillary thermal mass flow technology provide exponentially ... flow control applications. Over 80% of all industrial processes—such as those involving ...
(Date:4/27/2017)... , April 27, 2017  Pendant Biosciences, Inc. ... innovative surface modification and drug delivery technologies, today announced ... Innovation, JLABS @ Toronto . ... Officer of Pendant Biosciences, noted, "We are excited to ... community, and are honored to be the ...
(Date:4/26/2017)... CA, USA (PRWEB) , ... April 26, 2017 ... ... seminar on FDA’s GMP expectations for phase I clinical trials comes to Tampa, ... by various biotechnology and pharma professionals representing FDA regulated organizations such as Pfizer ...
(Date:4/26/2017)... Va. (PRWEB) , ... April 26, 2017 , ... ... make headlines and drive high-level conversations among healthcare industry stakeholders, the discussion surrounding ... Environment – taking place May 15-18, 2017 in Los Angeles, Calif. Hosted by ...
Breaking Biology Technology: