Navigation Links
Biomedical breakthrough: Blood vessels for lab-grown tissues
Date:1/11/2011

Researchers from Rice University and Baylor College of Medicine (BCM) have broken one of the major roadblocks on the path to growing transplantable tissue in the lab: They've found a way to grow the blood vessels and capillaries needed to keep tissues alive.

The new research is available online and due to appear in the January issue of the journal Acta Biomaterialia.

"The inability to grow blood-vessel networks -- or vasculature -- in lab-grown tissues is the leading problem in regenerative medicine today," said lead co-author Jennifer West, department chair and the Isabel C. Cameron Professor of Bioengineering at Rice. "If you don't have blood supply, you cannot make a tissue structure that is thicker than a couple hundred microns."

As its base material, a team of researchers led by West and BCM molecular physiologist Mary Dickinson chose polyethylene glycol (PEG), a nontoxic plastic that's widely used in medical devices and food. Building on 10 years of research in West's lab, the scientists modified the PEG to mimic the body's extracellular matrix -- the network of proteins and polysaccharides that make up a substantial portion of most tissues.

West, Dickinson, Rice graduate student Jennifer Saik, Rice undergraduate Emily Watkins and Rice-BCM graduate student Daniel Gould combined the modified PEG with two kinds of cells -- both of which are needed for blood-vessel formation. Using light that locks the PEG polymer strands into a solid gel, they created soft hydrogels that contained living cells and growth factors. After that, they filmed the hydrogels for 72 hours. By tagging each type of cell with a different colored fluorescent marker, the team was able to watch as the cells gradually formed capillaries throughout the soft, plastic gel.

To test these new vascular networks, the team implanted the hydrogels into the corneas of mice, where no natural vasculature exists. After injecting a dye into the mice's bloodstream, the researchers confirmed normal blood flow in the newly grown capillaries.

Another key advance, published by West and graduate student Joseph Hoffmann in November, involved the creation of a new technique called "two-photon lithography," an ultrasensitive way of using light to create intricate three-dimensional patterns within the soft PEG hydrogels. West said the patterning technique allows the engineers to exert a fine level of control over where cells move and grow. In follow-up experiments, also in collaboration with the Dickinson lab at BCM, West and her team plan to use the technique to grow blood vessels in predetermined patterns.


'/>"/>

Contact: David Ruth
druth@rice.edu
713-348-6327
Rice University
Source:Eurekalert

Related biology news :

1. Statistician wins $150K scholarship to interpret biomedical data
2. UVic biomedical engineer outsmarts HIV
3. UTHealth School of Biomedical Informatics professor to be inducted to AIMBE College of Fellows
4. Biomedical and health professionals converge in D.C. to absorb new findings in science of informatics
5. Fish gelatin: Ultra-high-tech biomedical uses ahead?
6. Plagiarism sleuths tackle full-text biomedical articles
7. UMMS biomedical researchers develop more reliable, less expensive synthetic graft material
8. Knome Awards Human Exome Sequencing and Analysis to Biomedical Researchers
9. LSU receives $15 million grant from NIH to build biomedical research pipeline for Louisiana
10. MARC Travel Awards announced for the 2010 Biomedical Engineering Society Annual Meeting
11. Warrior worms discovered in snails; UCSB scientists see possible biomedical applications
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/6/2017)... MATEO, Calif. , March 6, 2017 /PRNewswire/ ... marketing and sales technology, today announced Predictive Sales ... solution for infusing actionable sales intelligence into Salesforce. ... to automatically enable their sales organizations with deep ... messages that allow for intelligent engagement. Predictive Sales ...
(Date:3/2/2017)... Summary This report provides all the information ... partnering interests and activities since 2010. Download the ... Deals and Alliance since 2010 report provides an in-depth ... world,s leading life sciences companies. On demand ... of the most up to date deal and company ...
(Date:3/2/2017)... , March 2, 2017 Australian stem ... (ASX: CYP), has signed an agreement with the ... the Monash Biomedicine Discovery Institute and Department of Pharmacology ... conduct a further preclinical study to support the use ... of asthma.  Asthma is a chronic, ...
Breaking Biology News(10 mins):
(Date:3/29/2017)... ... , ... Bactana Animal Health, a company developing natural products aimed at reducing ... the gut microbiota, today announced the closing of its first round of funding. ... Capital Management, LLC and a number of private investors. The company will use the ...
(Date:3/29/2017)... NEWARK, Del. , March 29, 2017 ... medicine company, and W. L. Gore & ... announced a collaborative research agreement whereby the two companies ... delivery device technologies that provide protection from immune rejection. ... has been developing innovative stem cell-derived cell replacement therapies ...
(Date:3/29/2017)... TORONTO , March 29, 2017 /PRNewswire/ -  GeneNews Limited ... of BreastSentry™ , a new risk stratification test for ... reference lab, Innovative Diagnostics Laboratory ("IDL"). BreastSentry incorporates a blood-based ... five-year and lifetime risk for developing breast cancer.   ... BreastSentry measures ...
(Date:3/29/2017)... The Global Microfluidic Chips Market by Manufacturers, Countries, Type ... study on the existing state of the global Microfluidic Chips industry ... and Asia-Pacific , South ... Africa . ... Browse 172 Tables and Figures, 13 Major Company Profiles, spread ...
Breaking Biology Technology: