Navigation Links
Biologists unlocking the secrets of plant defenses, 1 piece at a time
Date:12/5/2012

Researchers examining how the hormone jasmonate works to protect plants and promote their growth have revealed how a transcriptional repressor of the jasmonate signaling pathway makes its way into the nucleus of the plant cell.

They hope the recently published discovery will eventually help farmers experience better crop yields with less use of potentially harmful chemicals.

"This is a small piece of a bigger picture, but it is a very important piece," said Maeli Melotto, a University of Texas at Arlington assistant professor of biology.

Melotto recently co-authored a paper that advances current understanding of plant defense mechanisms with her collaborator Sheng Yang He and his team at Michigan State University's Department of Energy Plant Research Laboratory (DOE-PRL). He is a Howard Hughes Medical Institute-Gordon and Betty Moore Foundation investigator. A paper on the collaboration was published online Nov. 19 in the Proceedings of the National Academy of Sciences under the title, "Transcription factor-dependent nuclear import of transcriptional repressor in jasmonate hormone signaling."

Jasmonate signaling has been a target of intense research because of its important role in maintaining the balance between plant growth and defense. In healthy plants, jasmonates play a role in reproductive development and growth responses. But, when stressors such as herbivorous insects, pathogen attack, or drought, jasmonate signaling shifts to defense-related cellular processes.

The team from UT Arlington and Michigan State focused on the role of jasmonate signaling repressors referred to as JAZ. Specifically, they looked at how JAZ interacts with a major transcription factor called MYC2 and a protein called COI1, which is a receptor necessary for jasmonate signaling.

The researchers discovered that a physical interaction between the repressors and the MYC2 persisted inside the plant cell nucleus, preventing jasmonate-associated gene transcription.

"This tight repression of transcription factors may be important because activation of jasmonate signaling, although important for plant defense against pathogens and insects, is energy-consuming and could lead to growth inhibition a widely known phenomenon called growth-defense tradeoff," said He, the Michigan State plant biologist. "In other words, plants have developed a mechanism to tightly repress presumably energy-consuming, jasmonate-mediated defense responses until it becomes necessary, such as upon pathogen and insect attacks."

The National Institutes of Health, the U.S. Department of Energy, Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation funded the work featured in the recent paper.

Melotto said understanding jasmonate signaling at the molecular level is also vital because some plant pathogens, such as Pseudomonas syringae, have developed ways to mimic the hormone's action in the cell. This gives them the ability to aggressively colonize plants without activating natural defense mechanisms, she said.

Melotto, who is currently receiving National Institutes of Health funding to examine plant defenses, said the next step in her jasmonate research is to determine which domain of the JAZ protein is responsible for plant innate immunity.

"This is one way to have sustainable agriculture," Melotto said of the research. "By increasing genetic resistance we could reduce the use of pesticides, decrease crop production costs and promote environmentally friendly farming practices."


'/>"/>

Contact: Traci Peterson
tpeterso@uta.edu
817-272-9208
University of Texas at Arlington
Source:Eurekalert

Related biology news :

1. SF State biologists tag zombees to track their flight
2. New book on stereology by Mark West is essential reading for neurobiologists
3. UCLA biologists reveal potential fatal flaw in iconic sexual selection study
4. Double the pain: RUB biologists find the cause of pain in the treatment of fair skin cancer
5. Biologists turn back the clock to understand evolution of sex differences
6. University of Toronto biologists predict extinction for organisms with poor quality genes
7. Penn biologists identify a key enzyme involved in protecting nerves from degeneration
8. American Society of Plant Biologists honors early career women scientists
9. Microbiologists can now measure extremely slow life
10. IU biologists offer clearer picture of how protein machine systems tweak gene expression
11. Pond skating insects reveal water-walking secrets
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... , April 5, 2017  The Allen Institute ... Allen Cell Explorer: a one-of-a-kind portal and dynamic digital ... 3D imaging data, the first application of deep learning ... human stem cell lines and a growing suite of ... platform for these and future publicly available resources created ...
(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
(Date:4/3/2017)... , April 3, 2017  Data captured ... engineering platform, detected a statistically significant association ... prior to treatment and objective response of ... potential to predict whether cancer patients will ... treatment, as well as to improve both pre-infusion ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... 2017 , ... Disappearing forests and increased emissions are the main causes of ... year. Especially those living in larger cities are affected by air pollution related diseases. ... most pollution-affected countries globally - decided to take action. , “I knew I had ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator ... osteosarcoma. SBT-100 is able to cross the cell membrane and bind intracellular STAT3 ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that give it ... Nanoparticle), a technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). ...
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder and CEO of ... Club. The event entitled “Stem Cells and Their Regenerative Powers,” was ... Dr. Harman, DVM, MPVM was joined by two human doctors: Peter B. Hanson, M.D., ...
Breaking Biology Technology: