Navigation Links
Biologists find unusual plant gene: abstinence by mutual consent
Date:12/20/2007

Biologists at the University of California, San Diego have discovered a gene in plants that disrupts fertilization only when mutations in the gene are present in both the female and male reproductive cells.

Their discovery, detailed in a paper that appears online today in the journal Current Biology, has been named the abstinence by mutual consent mutation because of its unusual properties.

Mutations that do not allow fertilization are known in plants, but usually these mutations are caused either by a mutation in the female reproductive cells or by a mutation in the male reproductive cells, said Julian Schroeder, a professor of biological sciences at UCSD who headed the study. In this gene, when only the female carries the mutation, completely normal fertilization occurs, and when only the male carries the mutation, fertilization also occurs. But fertilization is completely disrupted when both male and female reproductive cells carry the mutation simultaneously.

The scientists say the discovery of new genes that control the ability of plants to undergo fertilization could have important applications to plant breeders and conservationists.

Mutations that cause infertility in crops can provide a powerful tool for breeders who would like to avoid crossing of their plants to related species, said Aurelien Boisson-Dernier, a postdoctoral scholar in Schroeders UCSD laboratory and the first author of the study. Conversely breeders would at times like to breed crops by crossing them into distantly related species that however do not allow crossing due to infertility. For example, adding beneficial stress resistance genes from another species may not be possible if the male and female reproductive cells cant communicate properly. Understanding the mechanisms that mediate male-female communication during fertilization could help in circumventing the barrier of such interspecies crosses for breeding new varieties.

In animals and plants, fertilization relies on complex and specialized mechanisms that allow the precise delivery of the male reproductive sperm cell to the female egg cell. Fertilization requires fusion of the sperm and egg cells. In flowering plants, the male pollen tube carries sperm cells through the maternal tissues to deliver the sperm to the female reproductive cells. Once the pollen tube gets close to the egg cells, fertilization requires the bursting of the pollen tube. This pollen tube bursting expels sperm cells from inside the pollen tube, so sperm can then fertilize the female reproductive cell.

In investigating why the mutation they discovered caused disruption of fertilization in the mustard plant Arabidopsis, the scientists found that the pollen tubes did not burst when they came close to the female egg cells. So in the mutant plants, the sperm cells were not expelled from the pollen tubes toward the female cells. Instead the pollen tubes, in which the sperm reside, kept growing past the eggs cells.

The abstinence by mutual consent gene is the first gene identified so far with a critical function at the same time in both plant male and female reproductive cells that is essential for the delivery of sperm cells to the egg cell, said Boisson-Dernier.

The abstinence by mutual consent mutant pollen just acts as if there were no egg cell around and keeps on growing, Schroeder added. Its interesting because this lack of pollen bursting only happens if the mutation is carried by both the male and female, suggesting the abstinence by mutual consent gene somehow allows the male pollen and the female reproductive cells to talk to one another.

Boisson-Dernier found that the gene is responsible for producing a protein called peroxin that targets small organelles inside the cell called peroxisomes. Within the cell, peroxisomes are small organelles whose main functions are metabolizing fatty acids, protecting the cell from toxic free radicals and also generating a large range of signaling molecules.

Boisson-Derniers discovery demonstrated that peroxisomes play an unexpected key role in the dialogue between the male sperm carrier and the female egg cells. It also implies, the UCSD researchers say, that a diffusible signal generated in the peroxisomes of either the female or male reproductive cells is enough to allow the male-female communication to proceed. This signal coming from the peroxisomes of the male or female is sufficient to set off the eruption of the pollen tube allowing the sperm cells to be released.

The interesting next question is, what is the signal coming from peroxisomes that causes pollen tube bursting" said Schroeder.

Boisson-Dernier added, Why does this signal only cause bursting of the pollen tubes once the pollen tube gets close to the female reproductive cells" These findings actually suggest there may be a second signal or a second key that is needed so the pollen only bursts when male and female are in close vicinity of one another.


'/>"/>

Contact: Kim McDonald
kmcdonald@ucsd.edu
858-534-7572
University of California - San Diego
Source:Eurekalert

Related biology news :

1. The American Society of Plant Biologists announces 2007 awards
2. Biologists expose hidden costs of firefly flashes
3. Tufts University biologists link Huntingtons disease to health benefits in young
4. UD plant biologists uncover top wetland plants hidden weapon
5. Evolution is deterministic, not random, biologists conclude from multi-species study
6. Scientists learn structure of enzyme in unusual virus
7. Circadian clock controls plant growth hormone
8. Layered approach may yield stronger, more successful bone implants
9. Clearance of hepatitis C viral infection after liver transplantation
10. Device helps patients survive, regain function til transplant
11. How the plant immune system can drive the formation of new species
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/1/2016)... 2016 Favorable Government Initiatives Coupled ... Criminal Identification to Boost Global Biometrics System Market Through ... Research report, " Global Biometrics Market By Type, ... Opportunities, 2011 - 2021", the global biometrics market is ... account of growing security concerns across various end use ...
(Date:5/9/2016)... Elevay is currently known as ... for high net worth professionals seeking travel for work ... world, there is still no substitute for a face-to-face ... your deal with a firm handshake. This is why ... of citizenship via investment programs like those offered by ...
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 On ... session at 4,833.32, down 0.22%; the Dow Jones Industrial Average ... 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ), Aralez ... Inc. (NASDAQ: BIND ). Learn more about these ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and technical consulting, provides a free webinar on Performing Quality Investigations: ... 2016 at 12pm CT at no charge. , Incomplete investigations are still a ...
(Date:6/23/2016)... 2016  Amgen (NASDAQ: AMGN ) today ... life sciences incubator to accelerate the development of ... space at QB3@953 was created to help high-potential life ... many early stage organizations - access to laboratory infrastructure. ... launched two "Amgen Golden Ticket" awards, providing each winner ...
(Date:6/22/2016)... , June 22, 2016 Cell Applications, ... allow them to produce up to one billion ... lot within one week. These high-quality, consistent stem ... preparing cells and spend more time doing meaningful, ... a proprietary, high-volume manufacturing process that produces affordable, ...
Breaking Biology Technology: