Navigation Links
Biologists find unusual plant gene: abstinence by mutual consent

Biologists at the University of California, San Diego have discovered a gene in plants that disrupts fertilization only when mutations in the gene are present in both the female and male reproductive cells.

Their discovery, detailed in a paper that appears online today in the journal Current Biology, has been named the abstinence by mutual consent mutation because of its unusual properties.

Mutations that do not allow fertilization are known in plants, but usually these mutations are caused either by a mutation in the female reproductive cells or by a mutation in the male reproductive cells, said Julian Schroeder, a professor of biological sciences at UCSD who headed the study. In this gene, when only the female carries the mutation, completely normal fertilization occurs, and when only the male carries the mutation, fertilization also occurs. But fertilization is completely disrupted when both male and female reproductive cells carry the mutation simultaneously.

The scientists say the discovery of new genes that control the ability of plants to undergo fertilization could have important applications to plant breeders and conservationists.

Mutations that cause infertility in crops can provide a powerful tool for breeders who would like to avoid crossing of their plants to related species, said Aurelien Boisson-Dernier, a postdoctoral scholar in Schroeders UCSD laboratory and the first author of the study. Conversely breeders would at times like to breed crops by crossing them into distantly related species that however do not allow crossing due to infertility. For example, adding beneficial stress resistance genes from another species may not be possible if the male and female reproductive cells cant communicate properly. Understanding the mechanisms that mediate male-female communication during fertilization could help in circumventing the barrier of such interspecies crosses for breeding new varieties.

In animals and plants, fertilization relies on complex and specialized mechanisms that allow the precise delivery of the male reproductive sperm cell to the female egg cell. Fertilization requires fusion of the sperm and egg cells. In flowering plants, the male pollen tube carries sperm cells through the maternal tissues to deliver the sperm to the female reproductive cells. Once the pollen tube gets close to the egg cells, fertilization requires the bursting of the pollen tube. This pollen tube bursting expels sperm cells from inside the pollen tube, so sperm can then fertilize the female reproductive cell.

In investigating why the mutation they discovered caused disruption of fertilization in the mustard plant Arabidopsis, the scientists found that the pollen tubes did not burst when they came close to the female egg cells. So in the mutant plants, the sperm cells were not expelled from the pollen tubes toward the female cells. Instead the pollen tubes, in which the sperm reside, kept growing past the eggs cells.

The abstinence by mutual consent gene is the first gene identified so far with a critical function at the same time in both plant male and female reproductive cells that is essential for the delivery of sperm cells to the egg cell, said Boisson-Dernier.

The abstinence by mutual consent mutant pollen just acts as if there were no egg cell around and keeps on growing, Schroeder added. Its interesting because this lack of pollen bursting only happens if the mutation is carried by both the male and female, suggesting the abstinence by mutual consent gene somehow allows the male pollen and the female reproductive cells to talk to one another.

Boisson-Dernier found that the gene is responsible for producing a protein called peroxin that targets small organelles inside the cell called peroxisomes. Within the cell, peroxisomes are small organelles whose main functions are metabolizing fatty acids, protecting the cell from toxic free radicals and also generating a large range of signaling molecules.

Boisson-Derniers discovery demonstrated that peroxisomes play an unexpected key role in the dialogue between the male sperm carrier and the female egg cells. It also implies, the UCSD researchers say, that a diffusible signal generated in the peroxisomes of either the female or male reproductive cells is enough to allow the male-female communication to proceed. This signal coming from the peroxisomes of the male or female is sufficient to set off the eruption of the pollen tube allowing the sperm cells to be released.

The interesting next question is, what is the signal coming from peroxisomes that causes pollen tube bursting" said Schroeder.

Boisson-Dernier added, Why does this signal only cause bursting of the pollen tubes once the pollen tube gets close to the female reproductive cells" These findings actually suggest there may be a second signal or a second key that is needed so the pollen only bursts when male and female are in close vicinity of one another.


Contact: Kim McDonald
University of California - San Diego

Related biology news :

1. The American Society of Plant Biologists announces 2007 awards
2. Biologists expose hidden costs of firefly flashes
3. Tufts University biologists link Huntingtons disease to health benefits in young
4. UD plant biologists uncover top wetland plants hidden weapon
5. Evolution is deterministic, not random, biologists conclude from multi-species study
6. Scientists learn structure of enzyme in unusual virus
7. Circadian clock controls plant growth hormone
8. Layered approach may yield stronger, more successful bone implants
9. Clearance of hepatitis C viral infection after liver transplantation
10. Device helps patients survive, regain function til transplant
11. How the plant immune system can drive the formation of new species
Post Your Comments:
(Date:11/12/2015)...  Arxspan has entered into an agreement with ... use of its ArxLab cloud-based suite of biological ... will support the institute,s efforts to electronically manage ... internally and with external collaborators. The ArxLab suite ... Institute,s electronic laboratory notebook, compound and assay registration, ...
(Date:11/10/2015)... Nov. 10, 2015 About ... that helps to identify and verify the identity ... considered as the secure and accurate method of ... a particular individual because each individual,s signature is ... especially when dynamic signature of an individual is ...
(Date:11/2/2015)... Nov. 2, 2015  SRI International has been awarded ... preclinical development services to the National Cancer Institute (NCI) ... provide scientific expertise, modern testing and support facilities, and ... pharmacology and toxicology studies to evaluate potential cancer prevention ... The PREVENT Cancer Drug Development Program is an NCI-supported ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... , November 27, 2015 ... Growing popularity of companion diagnostics is ... cancer biomarkers market with pharmaceutical companies and ... companion diagnostic tests. . ... Complete report on global cancer biomarkers ...
(Date:11/26/2015)... November 26, 2015 --> ... specializing in imaging technologies, announced today that it has received ... of the Horizon 2020 European Union Framework Programme for Research ... clinical trial in breast cancer. , --> ... --> --> The study aims ...
(Date:11/25/2015)... Nov. 25, 2015  PharmAthene, Inc. (NYSE MKT: PIP) ... a stockholder rights plan (Rights Plan) in an effort ... carryforwards (NOLs) under Section 382 of the Internal Revenue ... PharmAthene,s use of its NOLs could be substantially ... defined in Section 382 of the Code. In general, ...
(Date:11/25/2015)... , November 25, 2015 Studies ... and human plaque and pave the way for more effective ... in cats     --> ... commonly diagnosed health problems in cats, yet relatively little was ... Two collaborative studies have been conducted by researchers from the ...
Breaking Biology Technology: