Navigation Links
Biologists discover bacterial defense mechanism against aggressive oxygen
Date:11/20/2009

Brussel, November 19th 2009 - Bacteria possess an ingenious mechanism for preventing oxygen from harming the building blocks of the cell. This is the new finding of a team of biologists that includes Joris Messens of VIB, a life sciences research institute in Flanders, Belgium, connected to the Vrije Universiteit Brussel. The scientists made this discovery by modifying the DNA of the intestinal bacterium Escherichia coli. By means of this model organism, they have uncovered the existence of a mechanism that repairs proteins in the cell that have been damaged by oxygen. There are indications that a similar repair system is active in human cells. The research results are being published in the eminent scientific journal Science. At the same time, the researchers are posting an animation online that illustrates the finding.

Proteins are extremely sensitive to oxidation

Proteins are the most important components of our body's cells. They aid the chemical reactions in the cell, provide structure and support, and facilitate communication within the organism. However, proteins are particularly sensitive to harmful effects from oxygen (oxidation). This is certainly the case for proteins that contain sulfurous components, with the amino acid cysteine as the basis. This is why the cysteine building blocks often occur as pairs, in which the bond between the two sulfur atoms provides protection.

But the cell also contains proteins in which the cysteine building blocks appear alone. How these single cysteines have been protected against oxygen has been unclear. Until now. Studying E. coli, the team of scientists, under the leadership of Jean-Franois Collet of the de Duve Institute (UCLouvain), has identified how two proteins - DsbG and DsbC - form the basis of an ingenious repair mechanism. Should the cysteine building block of a protein become damaged by oxygen, one of the two proteins takes care of repairing the damage.

Oxygen, a necessary evil

Oxygen is vital to the respiration of almost all cells. Among other things, the cells use the gas in the process of burning sugars to produce energy. But oxygen is a very aggressive molecule and can do serious harm to the cell's building blocks. This damage can be compared to the rusting or oxidation of iron. "Sulfurous proteins are extra-sensitive to oxidation," explains Joris Messens (VIB / the Vrije Universiteit Brussel). "If they become oxidized, they lose their functioning. This research clarifies how the cell arms itself against this event. Scientists have wondered for a long time what the function of DsbG and DsbC is and the difference between them. Now, finally, we have an answer."


'/>"/>

Contact: Joris Gansemans
joris.gansemans@vib.be
32-472-594-067
VIB (the Flanders Institute for Biotechnology)
Source:Eurekalert

Related biology news :

1. Beyond genomics, biologists and engineers decode the next frontier
2. Biologists, educators recognize excellence in evolution education
3. NIMBioS hosts tutorial on optimal control and optimization for biologists
4. Biologists discover death stench is a universal ancient warning signal
5. UTSA plant biologists publish where their peers are -- on the Web
6. Microbiologists find defense molecule that senses respiratory viruses
7. Geobiologists propose that the earliest complex organisms fed by absorbing ocean buffet
8. Biologists rediscover endangered frog population
9. Smaller plants punch above their weight in the forest, say Queens biologists
10. Biologists devise unifying framework to explain evolutionary puzzles
11. Biologists consider unifying framework to explain evolutionary puzzles
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC , ... announced the opening of an IoT Center of Excellence ... and expand the development of embedded iris biometric applications. ... level of convenience and security with unmatched biometric accuracy, ... identity aside from DNA. EyeLock,s platform uses video technology ...
(Date:4/28/2016)... SAN FRANCISCO and BANGALORE, India ... part of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... service provider, today announced a global partnership that ... convenient way to use mobile banking and payment services. ... Mobility is a key innovation area for financial services, but ...
(Date:4/19/2016)... 20, 2016 The new GEZE ... compact web-based "all-in-one" system solution for all door components. ... or the door interface with integration authorization management system, ... systems. The minimal dimensions of the access control and ... building installations offer considerable freedom of design with regard ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the ... today the Clinical Reach Virtual Patient Encounter CONSULT module which enables both ... physician and clinical trial team. , Using the CONSULT module, patients and physicians can ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... will join the faculty of the University of North Carolina Kenan-Flagler Business ... strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international ...
(Date:6/27/2016)... --  Ginkgo Bioworks , a leading organism design ... awarded as one of the World Economic Forum,s ... innovative companies. Ginkgo Bioworks is engineering biology to ... in the nutrition, health and consumer goods sectors. ... including Fortune 500 companies to design microbes for ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
Breaking Biology Technology: